Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Orava, Jiri

  • Google
  • 8
  • 40
  • 67

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024Tailoring microstructure and properties of CuZrAl(Nb) metallic-glass–crystal composites and nanocrystalline alloys obtained by flash-annealing5citations
  • 2022Phase-formation maps of CuZrAlCo metallic glass explored by in situ ultrafast techniques8citations
  • 2021In situ correlation between metastable phase-transformation mechanism and kinetics in a metallic glass.citations
  • 2021In situ correlation between metastable phase-transformation mechanism and kinetics in a metallic glass36citations
  • 2021In situ correlation between metastable phase-transformation mechanism and kinetics in a metallic glasscitations
  • 2021In situ correlation between metastable phase-transformation mechanism and kinetics in a metallic glasscitations
  • 2020Fast-current-heating devices to study in situ phase formation in metallic glasses by using high-energy synchrotron radiation11citations
  • 2017In-situ study of athermal reversible photocrystallization in a chalcogenide glass7citations

Places of action

Chart of shared publication
Nielsch, Kornelius
2 / 56 shared
Song, Kaikai
2 / 2 shared
Kaban, Ivan
7 / 29 shared
Zimmermann, Martin V.
5 / 9 shared
Eckert, Jürgen
1 / 1035 shared
Shtefan, Viktoriia
1 / 6 shared
Han, Xiaoliang
7 / 13 shared
Das, Saurabh Mohan
1 / 4 shared
Herbig, Michael
5 / 21 shared
Sun, Yonghao
1 / 1 shared
Soldatov, Ivan
6 / 12 shared
Cheng, Qi
1 / 1 shared
Dippel, Ann-Christin
5 / 29 shared
Raabe, Dierk
4 / 523 shared
Shuleshova, Olga
4 / 11 shared
Ivashko, Oleh
5 / 13 shared
Ivanov, Yurii P.
4 / 26 shared
Nurouzi, Ebrahim
4 / 4 shared
Balachandran, Shanoob
4 / 4 shared
Gutowski, Olof
5 / 17 shared
Greer, A. Lindsay
3 / 18 shared
Oswald, Steffen
4 / 25 shared
Greer, Alan Lindsay
1 / 3 shared
Von Zimmermann, Martin
1 / 5 shared
Martin, V. Zimmermann
1 / 1 shared
Lindackers, Dirk
1 / 1 shared
Kühn, Uta
1 / 19 shared
Rothkirch, André
1 / 7 shared
Kosiba, Konrad
1 / 14 shared
Bednarcik, Jozef
1 / 33 shared
Horst, Alexander
1 / 1 shared
Peukert, Karsten
1 / 1 shared
Voigtländer, Ralf
1 / 1 shared
Ziller, Steffen
1 / 1 shared
Siegel, Hartmut
1 / 1 shared
Wagner, Tomas
1 / 2 shared
Benekou, Vasiliki
1 / 1 shared
Greer, Al
1 / 15 shared
Strizik, Lukas
1 / 1 shared
Yannopoulos, Spyros N.
1 / 2 shared
Chart of publication period
2024
2022
2021
2020
2017

Co-Authors (by relevance)

  • Nielsch, Kornelius
  • Song, Kaikai
  • Kaban, Ivan
  • Zimmermann, Martin V.
  • Eckert, Jürgen
  • Shtefan, Viktoriia
  • Han, Xiaoliang
  • Das, Saurabh Mohan
  • Herbig, Michael
  • Sun, Yonghao
  • Soldatov, Ivan
  • Cheng, Qi
  • Dippel, Ann-Christin
  • Raabe, Dierk
  • Shuleshova, Olga
  • Ivashko, Oleh
  • Ivanov, Yurii P.
  • Nurouzi, Ebrahim
  • Balachandran, Shanoob
  • Gutowski, Olof
  • Greer, A. Lindsay
  • Oswald, Steffen
  • Greer, Alan Lindsay
  • Von Zimmermann, Martin
  • Martin, V. Zimmermann
  • Lindackers, Dirk
  • Kühn, Uta
  • Rothkirch, André
  • Kosiba, Konrad
  • Bednarcik, Jozef
  • Horst, Alexander
  • Peukert, Karsten
  • Voigtländer, Ralf
  • Ziller, Steffen
  • Siegel, Hartmut
  • Wagner, Tomas
  • Benekou, Vasiliki
  • Greer, Al
  • Strizik, Lukas
  • Yannopoulos, Spyros N.
OrganizationsLocationPeople

article

In-situ study of athermal reversible photocrystallization in a chalcogenide glass

  • Wagner, Tomas
  • Benekou, Vasiliki
  • Orava, Jiri
  • Greer, Al
  • Strizik, Lukas
  • Yannopoulos, Spyros N.
Abstract

<jats:p>The time-resolved Raman measurements reveal a three-stage mechanism of the photostructural changes in Ge25.0Ga9.5Sb0.5S65.0 (containing 0.5 at. % of Er3+) glass under continuous-above-bandgap illumination. These changes are reversible and effectively athermal, in that the local temperature rises to about 60% of the glass-transition temperature and the phase transitions take place in the glass/crystal and not in an equilibrium liquid. In the early stages of illumination, the glassy-network dimensionality changes from a predominantly 3-D to a mixture of 2-D/1-D represented by an increase in the fraction of edge-sharing tetrahedra and the emergence of homonuclear (semi)metallic bonds. This incubation period of the structural rearrangements, weakly thermally activated with an energy of ∼0.16 eV, facilitates a reversible photocrystallization. The photocrystallization rate in the glass is comparable to that achieved by thermal crystallization from supercooled liquid at large supercooling. Almost complete re-amorphization can be achieved in about an hour by reducing the incident laser-power density by a factor of ten. Glass-ceramic composites—with varying glass-to-crystal fraction—can be obtained by ceasing the illumination during re-amorphization. Microstructural imaging reveals photoinduced mass transport and the formation of columnar-porous structures. This shows the potential for a bond-specific engineering of glassy structures for photonic applications with a spatial resolution unachievable by thermal annealing.</jats:p>

Topics
  • porous
  • density
  • impedance spectroscopy
  • phase
  • glass
  • glass
  • composite
  • phase transition
  • annealing
  • ceramic
  • crystallization