Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vervoort, Max W. S.

  • Google
  • 1
  • 3
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Depletion-mode Quantum Dots in Intrinsic Silicon7citations

Places of action

Chart of shared publication
Spruijtenburg, Paul C.
1 / 2 shared
Zwanenburg, Floris
1 / 3 shared
Amitonov, Sergey V.
1 / 3 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Spruijtenburg, Paul C.
  • Zwanenburg, Floris
  • Amitonov, Sergey V.
OrganizationsLocationPeople

article

Depletion-mode Quantum Dots in Intrinsic Silicon

  • Spruijtenburg, Paul C.
  • Vervoort, Max W. S.
  • Zwanenburg, Floris
  • Amitonov, Sergey V.
Abstract

We report the fabrication and electrical characterization of depletion-mode quantum dots in a two-dimensional hole gas (2DHG) in intrinsic silicon. We use fixed charge in a SiO$_2$/Al$_2$O$_3$ dielectric stack to induce a 2DHG at the Si/SiO$_2$ interface. Fabrication of the gate structures is accomplished with a single layer metallization process. Transport spectroscopy reveals regular Coulomb oscillations with charging energies of 10-15 meV and 3-5 meV for the few- and many-hole regimes, respectively. This depletion-mode design avoids complex multilayer architectures requiring precision alignment, and allows to adopt directly best practices already developed for depletion dots in other material systems. We also demonstrate a method to deactivate fixed charge in the SiO$_2$/Al$_2$O$_3$ dielectric stack using deep ultraviolet light, which may become an important procedure to avoid unwanted 2DHG build-up in Si MOS quantum bits.

Topics
  • impedance spectroscopy
  • Silicon
  • two-dimensional
  • quantum dot