People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zimanyi, Gergely
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
On the limits of coercivity in permanent magnets
Abstract
<p>The maximum coercivity that can be achieved for a given hard magnetic alloy is estimated by computing the energy barrier for the nucleation of a reversed domain in an idealized microstructure without any structural defects and without any soft magnetic secondary phases. For Sm<sub>1-</sub><sub>z</sub>Zr<sub>z</sub>(Fe<sub>1-</sub><sub>y</sub>Co<sub>y</sub>)<sub>12-</sub><sub>x</sub>Ti<sub>x</sub> based alloys, which are considered an alternative to Nd<sub>2</sub>Fe<sub>14</sub>B magnets with a lower rare-earth content, the coercive field of a small magnetic cube is reduced to 60% of the anisotropy field at room temperature and to 50% of the anisotropy field at elevated temperature (473 K). This decrease of the coercive field is caused by misorientation, demagnetizing fields, and thermal fluctuations.</p>