People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arredondo-Arechavala, Miryam
Queen's University Belfast
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Low temperature plasma‐assisted double anodic dissolution: a new approach for the synthesis of GdFeO3 perovskite nanoparticlescitations
- 2023Intensifying levulinic acid hydrogenation using mechanochemically prepared copper on manganese oxide catalystscitations
- 2022Insights into selective hydrogenation of levulinic acid using copper on manganese oxide octahedral molecular sievescitations
- 2022Insights into selective hydrogenation of levulinic acid using copper on manganese oxide octahedral molecular sievescitations
- 2021ZnO nucleation into trititanate nanotubes by ALD equipment techniques, a new way to functionalize layered metal oxidescitations
- 2021Importance of overcoming MOVPE surface evolution instabilities for >1.3 μm metamorphic lasers on GaAscitations
- 2018Giant Resistive Switching in Mixed Phase BiFeO3 via phase population controlcitations
- 2017Non-equilibrium ferroelectric-ferroelastic 10nm nanodomains: wrinkles, period-doubling and power-law relaxationcitations
- 2017Non-equilibrium ferroelectric-ferroelastic 10nm nanodomains: wrinkles, period-doubling and power-law relaxationcitations
- 2017Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramiccitations
- 2017Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramiccitations
- 2014Epitaxial ferroelectric Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 thin films on La 0.7 Sr 0.3 MnO 3 bottom electrodecitations
- 2014Studies of the Room-Temperature Multiferroic Pb(Fe0.5Ta0.5)0.4(Zr0.53Ti0.47)0.6O3: Resonant Ultrasound Spectroscopy, Dielectric, and Magnetic Phenomenacitations
- 2014Epitaxial ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 thin films on La0.7Sr0.3MnO3 bottom electrodecitations
- 2013Strain dependent microstructural modifications of BiCrO3 epitaxial thin filmscitations
- 2011Microstructural analysis of interfaces in a ferromagnetic- multiferroic epitaxial heterostructurecitations
- 2011Chemistry of Ruddlesden-Popper planar faults at a ferroelectric-ferromagnet perovskite interfacecitations
- 2010Synthesis of epitaxial metal oxide nanocrystals via a phase separation approachcitations
- 2008Role of misfit dislocations in ferroelectric thin films CH031
Places of action
Organizations | Location | People |
---|
article
Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramic
Abstract
Despite being of wide commercial use in devices, the orders of magnitude increase in resistance that can be seen in some semiconducting BaTiO3-based ceramics, on heating through the Curie temperature (TC), is far from well understood. Current understanding of the behavior hinges on the role of grain boundary resistance that can be modified by polarization discontinuities which develop in the ferroelectric state. However, direct nanoscale resistance mapping to verify this model has rarely been attempted, and the potential approach to engineer polarization states at the grain boundaries, that could lead to optimized positive temperature coefficient (PTC) behavior, is strongly underdeveloped. Here we present direct visualization and nanoscale mapping in a commercially optimized BaTiO3 –PbTiO3 –CaTiO3 PTC ceramic using Kelvin probe force microscopy, which shows that, even in the low resistance ferroelectric state, the potential drop at grain boundaries is significantly greater than in grain interiors. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy reveal new evidence of Pb-rich grain boundaries symptomatic of a higher net polarization normal to the grain boundaries compared to the purer grain interiors. These results validate the critical link between optimized PTC performance and higher local polarization at grain boundaries in this specific ceramic system and suggest a novel route towards engineering devices where an interface layer of higher spontaneous polarization could lead to enhanced PTC functionality.