People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kumar, Amit
Queen's University Belfast
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023Ferrielectricity in the archetypal antiferroelectric, PbZrO3citations
- 2023Unraveling Spatiotemporal Transient Dynamics at the Nanoscale via Wavelet Transform-Based Kelvin Probe Force Microscopycitations
- 2023Ferroelectric domain wall p-n junctionscitations
- 2022Conducting ferroelectric domain walls emulating aspects of neurological behaviorcitations
- 2022Deterministic Dual control of phase competition in Strained BiFeO3 : A Multi-Parametric Structural Lithography Approach
- 2020Direct Processing of PbZr0.53Ti0.47O3 Films on Glass and Polymeric Substratescitations
- 2020Nanodomain Patterns in Ultra-Tetragonal Lead Titanate (PbTiO3)citations
- 2018Revealing the interplay of structural phase transitions and ferroelectric switching in mixed phase BiFeO3citations
- 2018Electromechanical-mnemonic effects in BiFeO3 for electric field history dependent crystallographic phase patterningcitations
- 2017Functional and structural effects of layer periodicity in chemicalsolution-deposited Pb(Zr,Ti)O3thin filmscitations
- 2017Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramiccitations
- 2016Local probing of ferroelectric and ferroelastic switching through stress-mediated piezoelectric spectroscopycitations
- 2015Sub-nA spatially resolved conductivity profiling of surface and interface defects in ceria filmscitations
- 2014Spatially-resolved mapping of history-dependent coupled electrochemical and electronical behaviors of electroresistive NiOcitations
- 2014Influence of a Single Grain Boundary on Domain Wall Motion in Ferroelectricscitations
- 2013Nanoscale mapping of oxygen vacancy kinetics in nanocrystalline Samarium doped ceria thin filmscitations
- 2013Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memoriescitations
- 2013Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytescitations
- 2013Nanoscale Probing of Voltage Activated Oxygen Reduction/Evolution Reactions in Nanopatterned (LaxSr1-x)CoO3-delta Cathodescitations
- 2013Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O-3-PbZrO3-PbTiO3 piezoelectric ceramicscitations
- 2011Measuring oxygen reduction/evolution reactions on the nanoscalecitations
- 2007Adsorption-controlled molecular-beam epitaxial growth of BiFeO3citations
- 2006Multiferroic domain dynamics in strained strontium titanatecitations
Places of action
Organizations | Location | People |
---|
article
Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramic
Abstract
Despite being of wide commercial use in devices, the orders of magnitude increase in resistance that can be seen in some semiconducting BaTiO3-based ceramics, on heating through the Curie temperature (TC), is far from well understood. Current understanding of the behavior hinges on the role of grain boundary resistance that can be modified by polarization discontinuities which develop in the ferroelectric state. However, direct nanoscale resistance mapping to verify this model has rarely been attempted, and the potential approach to engineer polarization states at the grain boundaries, that could lead to optimized positive temperature coefficient (PTC) behavior, is strongly underdeveloped. Here we present direct visualization and nanoscale mapping in a commercially optimized BaTiO3 –PbTiO3 –CaTiO3 PTC ceramic using Kelvin probe force microscopy, which shows that, even in the low resistance ferroelectric state, the potential drop at grain boundaries is significantly greater than in grain interiors. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy reveal new evidence of Pb-rich grain boundaries symptomatic of a higher net polarization normal to the grain boundaries compared to the purer grain interiors. These results validate the critical link between optimized PTC performance and higher local polarization at grain boundaries in this specific ceramic system and suggest a novel route towards engineering devices where an interface layer of higher spontaneous polarization could lead to enhanced PTC functionality.