People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Renoud, Raphaël
Nantes Université
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2022Crystallographic orientation dependence of ferroelectric domain walls in antiferroelectric lead zirconate thin filmscitations
- 2021Characterization and Performance Analysis of BST-Based Ferroelectric Varactors in the Millimeter-Wave Domaincitations
- 2020Effect of ferroelectric domain walls on the dielectric properties of PbZrO3 thin filmscitations
- 2017Effect of the incident power on permittivity, losses and tunability of BaSrTiO<sub>3</sub> thin films in the microwave frequency rangecitations
- 2017Effect of the incident power on permittivity, losses and tunability of BaSrTiO 3 thin films in the microwave frequency rangecitations
- 2016Domain wall motions in BST ferroelectric thin films in the microwave frequency rangecitations
- 2016Description of domain wall motions by the hyperbolic law
- 2016Decomposition of the different contributions to permittivity, losses, and tunability in BaSrTiO3 thin films using the hyperbolic lawcitations
- 2015Effect of Manganese Doping of BaSrTiO 3 on Diffusion and Domain Wall Pinningcitations
- 2015Temperature stable BaSrTiO3 thin films suitable for microwave applicationscitations
- 2014Dielectric long time relaxation of domains walls in PbZrTiO3 thin filmscitations
- 2014Electrophoretic deposition of BaTiO3 thin films from stable colloidal aqueous solutionscitations
- 2011The effect of Mn doping on the dielectric properties and domain wall mobility of (Ba0.8Sr0.2)TiO3 thin films
- 2011Ferroelectric thin films for mobile communication applications
- 2011Measurement and Modeling of Dielectric Properties of Pb(Zr,Ti)O-3 Ferroelectric Thin Filmscitations
- 2011Dielectric properties of PZT thin films under a low AC-electric field at different bias fields
- 2011Description of the low field nonlinear dielectric properties of ferroelectric and multiferroic materialscitations
- 2010Measurement and modelisation of dielectric properties of ferroelectrics thin layers
- 2010Description of the nonlinear dielectric properties of ferroelectrics under a weak AC-fieldcitations
- 20071-D modelisation of a BaTiO3 single crystal
Places of action
Organizations | Location | People |
---|
article
Effect of the incident power on permittivity, losses and tunability of BaSrTiO<sub>3</sub> thin films in the microwave frequency range
Abstract
Domain wall motions in ferroelectrics participate to the material's complex permittiv-ity and are responsible for their sensitivity of the dielectric properties to the driving electric field and thus to the incident power at microwave frequencies. In the present study, the dependence of the permittivity, the dielectric losses and the tunability of Ba<sub>2/3</sub> Sr<sub>1/3</sub>TiO<sub>3</sub> (BST) thin films on the incident power and on the bias fields is examined at a frequency of 500 MHz. While, the domain wall motion participates only slightly to the permittivity (< 5 %), it strongly influences the losses due to its very dissipative behavior. As a consequence, the Figure of Merit (FoM , ratio between tunability and dielectric losses) of the material depends on the applied microwave power. In the present study, a decrease of the FoM from 29 to 21 is observed for an incident power varying from −20 dBm to 5 dBm. When characterizing ferroelectric materials, the incident power has to be considered; moreover, domain wall motion effects should be limited in order to achieve a high FoM and less power sensitivity.