Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Huesmann, H.

  • Google
  • 1
  • 7
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Direction-dependent elastic properties and phononic behavior of PMMA/BaTiO3 nanocomposite thin films7citations

Places of action

Chart of shared publication
Alonso-Redondo, E.
1 / 2 shared
Djafari-Rouhani, B.
1 / 4 shared
Fytas, G.
1 / 5 shared
Tremel, Wolfgang
1 / 33 shared
Abouti, O. El
1 / 1 shared
Gueddida, Abdellatif
1 / 4 shared
Boudouti, E. H. El
1 / 3 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Alonso-Redondo, E.
  • Djafari-Rouhani, B.
  • Fytas, G.
  • Tremel, Wolfgang
  • Abouti, O. El
  • Gueddida, Abdellatif
  • Boudouti, E. H. El
OrganizationsLocationPeople

article

Direction-dependent elastic properties and phononic behavior of PMMA/BaTiO3 nanocomposite thin films

  • Alonso-Redondo, E.
  • Djafari-Rouhani, B.
  • Fytas, G.
  • Tremel, Wolfgang
  • Abouti, O. El
  • Gueddida, Abdellatif
  • Huesmann, H.
  • Boudouti, E. H. El
Abstract

<jats:p>Determination of the anisotropic mechanical properties of nanostructured hybrid films is of great importance to improve fabrication and to enable reliable utility. Here, we employ spontaneous Brillouin light spectroscopy to record the phononic dispersion relation along the two symmetry directions in a supported PMMA (poly(methylmethacrylate))-BaTiO3 hybrid superlattice (SL) with a lattice constant of about 140 nm. Several dispersive elastic modes are resolved for in-plane wave propagation, whereas along the periodicity direction the SL opens a wide propagation stop band for hypersonic phonons and near UV photons both centered at about 280 nm. A thorough theoretical analysis based on the finite element method quantitatively captures the band diagrams along the two main symmetry directions, helps identify the large density mismatch effect on the unexpectedly low sound phase velocity, and reveals significant anisotropy of the SL elastic tensor. Phonon propagation is a sensitive index of the structure, density, and the mechanical moduli of nanocomposite films.</jats:p>

Topics
  • nanocomposite
  • density
  • impedance spectroscopy
  • dispersion
  • phase
  • thin film
  • anisotropic