People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Huang, J. Y.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Plasticity and optical properties of GaN under highly localized nanoindentation stress fields
Abstract
<jats:p>Nanoscale plasticity has been studied on (0001) GaN thin films, using tips with very small radius of curvature. Cross-section transmission electron microscopy images of the nanoindentations indicate that the primary slip systems are the pyramidal {11¯01}⟨112¯3⟩ and {112¯2}⟨112¯3⟩, followed by the basal {0002}⟨112¯0⟩. Incipient plasticity was observed to be initiated by metastable atomic-scale slip events that occur as the crystal conforms to the shape of the tip. Large volumetric material displacements along the {11¯01}⟨112¯3⟩ and {112¯2}⟨112¯3⟩ slip systems were observed at an average shear stress of 11 GPa. Hexagonal shaped nanoindentation impressions following the symmetry of GaN were observed, with material pile-up in the ⟨112¯0⟩ directions. Spatially resolved cathodoluminescence images were used to correlate the microstructure with the optical properties. A large number of non-radiative defects were observed directly below the indentation. Regions under tensile stress extending from the nanoindentation along ⟨112¯0⟩ directions were associated with the {0002}⟨112¯0⟩ slip.</jats:p>