People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Suzuki, Kiyonori
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Effect of grain size on the core loss of nanocrystalline Fe86B13Cu1 prepared by ultra-rapid annealingcitations
- 2022Resolving the Complex Spin Structure in Fe-Based Soft Magnetic Nanocrystalline Material by Magnetic Small-Angle Neutron Scattering
- 2022Unraveling the magnetic softness in Fe–Ni–B-based nanocrystalline material by magnetic small-angle neutron scatteringcitations
- 2022Uniaxial polarization analysis of bulk ferromagnets: theory and first experimental resultscitations
- 2020Magnetic Guinier lawcitations
- 2020Engineered Porous Nanocomposites That Deliver Remarkably Low Carbon Capture Energy Costscitations
- 2017Fe3O4@HKUST-1 and Pd/Fe3O4@HKUST-1 as magnetically recyclable catalysts prepared via conversion from a Cu-based ceramiccitations
- 2017Copper-free nanocrystalline soft magnetic materials with high saturation magnetization comparable to that of Si steelcitations
- 2015Lead(II) uptake by aluminium based magnetic framework composites (MFCs) in watercitations
- 2013Magnetization reversal in Nd-Fe-B based nanocomposites as seen by magnetic small-angle neutron scatteringcitations
- 2012The use of plasma treatment for simultaneous carbonization and reduction of iron oxide/polypyrrole core/shell nanoparticlescitations
- 2012Phase reduction of coated maghemite (γ-Fe2O3) nanoparticles under microwave-induced plasma heating for rapid heat treatmentcitations
- 2011Ferromagnetism of polythiophene-capped Au nanoparticles
- 2011Synthesis and electromagnetic interference shielding properties of iron oxide/polypyrrole nanocompositescitations
- 2010Functional magnetic nanocomposites for EMI shielding
- 2009Potential blends of magnetic nano-composites for EMI shielding applications
Places of action
Organizations | Location | People |
---|
article
Copper-free nanocrystalline soft magnetic materials with high saturation magnetization comparable to that of Si steel
Abstract
<jats:p>The effect of rapid annealing on the structural and magnetic properties of melt-spun Fe-B based alloys has been investigated. The grain size of a Fe85B13Ni2 alloy after primary crystallization is reduced significantly by rapid annealing, and a low coercivity of 4.6 A/m and a high saturation magnetization of 1.90 T are obtained. This saturation magnetization is comparable to those of Si steels (1.8–2 T). The core losses of nanocrystalline Fe85B13Ni2 are lower by 60%–80% as compared with those of commercial Si steels. Rapid annealing is found to be effective in realizing a magnetically soft nanostructure without Cu addition, leading to an exceptionally low content of nonmagnetic additives (2.8 wt. %) and thus a high saturation magnetization in the nanostructure.</jats:p>