Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Onomitsu, K.

  • Google
  • 1
  • 3
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Engineering quantum spin Hall insulators by strained-layer heterostructures28citations

Places of action

Chart of shared publication
Couëdo, F.
1 / 4 shared
Muraki, Koji
1 / 2 shared
Suzuki, K.
1 / 25 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Couëdo, F.
  • Muraki, Koji
  • Suzuki, K.
OrganizationsLocationPeople

article

Engineering quantum spin Hall insulators by strained-layer heterostructures

  • Onomitsu, K.
  • Couëdo, F.
  • Muraki, Koji
  • Suzuki, K.
Abstract

<jats:p>Quantum spin Hall insulators (QSHIs), also known as two-dimensional topological insulators, have emerged as an unconventional class of quantum states with insulating bulk and conducting edges originating from nontrivial inverted band structures and have been proposed as a platform for exploring spintronics applications and exotic quasiparticles related to the spin-helical edge modes. Despite theoretical proposals for various materials, however, experimental demonstrations of QSHIs have so far been limited to two systems—HgTe/CdTe and InAs/GaSb—both of which are lattice-matched semiconductor heterostructures. Here, we report transport measurements in yet another realization of a band-inverted heterostructure as a QSHI candidate—InAs/InxGa1−xSb with lattice mismatch. We show that the compressive strain in the InxGa1−xSb layer enhances the band overlap and energy gap. Consequently, high bulk resistivity, two orders of magnitude higher than for InAs/GaSb, is obtained deep in the band-inverted regime. The strain also enhances bulk Rashba spin-orbit splitting, leading to an unusual situation where the Fermi level crosses only one spin branch for electronlike and holelike bands over a wide density range. These properties make this system a promising platform for robust QSHIs with unique spin properties and demonstrate the strain to be an important ingredient for tuning spin-orbit interaction.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • resistivity
  • semiconductor
  • two-dimensional
  • band structure