Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Onken, J.

  • Google
  • 1
  • 6
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Development of a polymer composite with high electrical conductivity and improved impact strength for the application as bipolar plate4citations

Places of action

Chart of shared publication
Krause, Beate
1 / 89 shared
Hickmann, T.
1 / 3 shared
Cohnen, A.
1 / 3 shared
Hopmann, C.
1 / 12 shared
Windeck, C.
1 / 1 shared
Pötschke, Petra
1 / 330 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Krause, Beate
  • Hickmann, T.
  • Cohnen, A.
  • Hopmann, C.
  • Windeck, C.
  • Pötschke, Petra
OrganizationsLocationPeople

document

Development of a polymer composite with high electrical conductivity and improved impact strength for the application as bipolar plate

  • Krause, Beate
  • Hickmann, T.
  • Cohnen, A.
  • Hopmann, C.
  • Onken, J.
  • Windeck, C.
  • Pötschke, Petra
Abstract

Bipolar plates constitute the most important structural component in fuel cell stacks. Highly filled thermoplastic composites with high electrical conductivity obtain an increasing importance in the design of bipolar plates as alternative to conventional metallic systems. Thermoplastics (e.g. PP) have suitable properties such as a good processability, chemical resistance, light weight and low production costs. As thermoplastics have low electrical conductivities, conductive fillers have to be included in the matrix. A high content of such fillers (e.g. graphite) in excess of 80 wt.-% is necessary to achieve the desired electrical properties. However, materials with such high filler contents embrittle readily. The workability in injection and compression molding is difficult and the mechanical stability is insufficient in case of strain deformation. As consequence, material failure and an inacceptable amount of damaged goods can be observed during the processing. As no suitable thermoplastic system is available for better mechanical properties, the induction and dispersion of a rubber phase in the thermoplastic matrix can be used to increase the impact strength of the conductive composite. In this research work a ternary composite, based on PP as matrix, EPDM as impact modifier and synthetic graphite as conductive filler, was developed. The material was produced using a 26 mm co-rotating, intermeshing twin-screw extruder. The amounts of PP, EPDM and graphite were varied systematically and a process window was defined that enables improved impact strength and high electrical conductivity of the new material. The results indicate that impact strength can be enhanced by about 99 % with an EPDM content of 30 wt.-% in the PP matrix. The electrical conductivity decreases in a small range with increasing content of EPDM, but the conductivity is still excellent for producing bipolar plates. ; acceptedVersion

Topics
  • impedance spectroscopy
  • dispersion
  • polymer
  • Carbon
  • phase
  • strength
  • composite
  • chemical resistance
  • thermoplastic
  • rubber
  • electrical conductivity
  • compression molding