People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ren, Fan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Heavy ion irradiation induced failure of gallium nitride high electron mobility transistors: effects of in-situ biasingcitations
- 2022Band Alignment of Al<sub>2</sub>O<sub>3</sub> on α-(Al<sub>x</sub>Ga<sub>1-x</sub>)<sub>2</sub>O<sub>3</sub>citations
- 2020In Situ Transmission Electron Microscopy Observations of Forward Bias Degradation of Vertical Geometry β-Ga<sub>2</sub>O<sub>3</sub> Rectifierscitations
- 2016Synthesis of graphene and graphene nanostructures by ion implantation and pulsed laser annealingcitations
- 2012Low-temperature, site selective graphitization of SiC via ion implantation and pulsed laser annealingcitations
Places of action
Organizations | Location | People |
---|
article
Synthesis of graphene and graphene nanostructures by ion implantation and pulsed laser annealing
Abstract
<p>In this paper, we report a systematic study that shows how the numerous processing parameters associated with ion implantation (II) and pulsed laser annealing (PLA) can be manipulated to control the quantity and quality of graphene (G), few-layer graphene (FLG), and other carbon nanostructures selectively synthesized in crystalline SiC (c-SiC). Controlled implantations of Si<sup>-</sup> plus C<sup>-</sup> and Au<sup>+</sup> ions in c-SiC showed that both the thickness of the amorphous layer formed by ion damage and the doping effect of the implanted Au enhance the formation of G and FLG during PLA. The relative contributions of the amorphous and doping effects were studied separately, and thermal simulation calculations were used to estimate surface temperatures and to help understand the phase changes occurring during PLA. In addition to the amorphous layer thickness and catalytic doping effects, other enhancement effects were found to depend on other ion species, the annealing environment, PLA fluence and number of pulses, and even laser frequency. Optimum II and PLA conditions are identified and possible mechanisms for selective synthesis of G, FLG, and carbon nanostructures are discussed.</p>