Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ren, Fan

  • Google
  • 5
  • 28
  • 55

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023Heavy ion irradiation induced failure of gallium nitride high electron mobility transistors: effects of in-situ biasing13citations
  • 2022Band Alignment of Al<sub>2</sub>O<sub>3</sub> on α-(Al<sub>x</sub>Ga<sub>1-x</sub>)<sub>2</sub>O<sub>3</sub>5citations
  • 2020In Situ Transmission Electron Microscopy Observations of Forward Bias Degradation of Vertical Geometry β-Ga<sub>2</sub>O<sub>3</sub> Rectifiers10citations
  • 2016Synthesis of graphene and graphene nanostructures by ion implantation and pulsed laser annealing6citations
  • 2012Low-temperature, site selective graphitization of SiC via ion implantation and pulsed laser annealing21citations

Places of action

Chart of shared publication
Haque, Aman
3 / 6 shared
Rasel, Md Abu Jafar
1 / 3 shared
Schoell, Ryan
1 / 5 shared
Wolfe, Douglas E.
1 / 2 shared
Harris, Charles
1 / 1 shared
Pearton, Stephen
3 / 5 shared
Hattar, Khalid
1 / 6 shared
Al-Mamun, Nahid Sultan
2 / 3 shared
Hassa, Anna
1 / 4 shared
Xia, Xinyi
1 / 2 shared
Grundmann, Marius
1 / 32 shared
Fares, Chaker
1 / 1 shared
Wenckstern, Holger Von
1 / 4 shared
Kochkova, Anastasia
1 / 1 shared
Tadjer, Marko
1 / 1 shared
Glavin, Nicholas
1 / 1 shared
Xian, Minghan
1 / 1 shared
Islam, Zahabul
1 / 2 shared
Venkatachalam, Dinesh K.
2 / 2 shared
Rudawski, Nicholas G.
1 / 1 shared
Berke, Kara
1 / 1 shared
Wang, Xiaotie
2 / 2 shared
Appleton, Bill R.
2 / 2 shared
Gila, Brent P.
2 / 2 shared
Hebard, Arthur F.
2 / 2 shared
Fridmann, Joel
2 / 2 shared
Lemaitre, Maxime G.
1 / 1 shared
Tongay, Sefaattin
1 / 9 shared
Chart of publication period
2023
2022
2020
2016
2012

Co-Authors (by relevance)

  • Haque, Aman
  • Rasel, Md Abu Jafar
  • Schoell, Ryan
  • Wolfe, Douglas E.
  • Harris, Charles
  • Pearton, Stephen
  • Hattar, Khalid
  • Al-Mamun, Nahid Sultan
  • Hassa, Anna
  • Xia, Xinyi
  • Grundmann, Marius
  • Fares, Chaker
  • Wenckstern, Holger Von
  • Kochkova, Anastasia
  • Tadjer, Marko
  • Glavin, Nicholas
  • Xian, Minghan
  • Islam, Zahabul
  • Venkatachalam, Dinesh K.
  • Rudawski, Nicholas G.
  • Berke, Kara
  • Wang, Xiaotie
  • Appleton, Bill R.
  • Gila, Brent P.
  • Hebard, Arthur F.
  • Fridmann, Joel
  • Lemaitre, Maxime G.
  • Tongay, Sefaattin
OrganizationsLocationPeople

article

Synthesis of graphene and graphene nanostructures by ion implantation and pulsed laser annealing

  • Venkatachalam, Dinesh K.
  • Rudawski, Nicholas G.
  • Berke, Kara
  • Wang, Xiaotie
  • Appleton, Bill R.
  • Gila, Brent P.
  • Ren, Fan
  • Hebard, Arthur F.
  • Fridmann, Joel
Abstract

<p>In this paper, we report a systematic study that shows how the numerous processing parameters associated with ion implantation (II) and pulsed laser annealing (PLA) can be manipulated to control the quantity and quality of graphene (G), few-layer graphene (FLG), and other carbon nanostructures selectively synthesized in crystalline SiC (c-SiC). Controlled implantations of Si<sup>-</sup> plus C<sup>-</sup> and Au<sup>+</sup> ions in c-SiC showed that both the thickness of the amorphous layer formed by ion damage and the doping effect of the implanted Au enhance the formation of G and FLG during PLA. The relative contributions of the amorphous and doping effects were studied separately, and thermal simulation calculations were used to estimate surface temperatures and to help understand the phase changes occurring during PLA. In addition to the amorphous layer thickness and catalytic doping effects, other enhancement effects were found to depend on other ion species, the annealing environment, PLA fluence and number of pulses, and even laser frequency. Optimum II and PLA conditions are identified and possible mechanisms for selective synthesis of G, FLG, and carbon nanostructures are discussed.</p>

Topics
  • surface
  • amorphous
  • Carbon
  • phase
  • simulation
  • annealing