Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Scholz, Ferdinand

  • Google
  • 3
  • 38
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2016Composition analysis of coaxially grown InGaN multi quantum wells using scanning transmission electron microscopycitations
  • 2016Toward defect-free semi-polar GaN templates on pre-structured sapphire6citations
  • 2015Optical properties of defects in nitride semiconductors6citations

Places of action

Chart of shared publication
Müller-Caspary, K.
1 / 2 shared
Rosenauer, A.
1 / 15 shared
Heinz, D.
1 / 7 shared
Hommel, D.
1 / 16 shared
Thonke, Klaus
2 / 7 shared
Madel, M.
1 / 1 shared
Schowalter, M.
1 / 8 shared
Mehrtens, Thorsten
1 / 5 shared
Tischer, I.
1 / 2 shared
Fikry, M.
1 / 1 shared
Aschenbrenner, T.
1 / 2 shared
Caliebe, Marian
1 / 1 shared
Humphreys, Colin
1 / 8 shared
Zhu, Tongtong
1 / 5 shared
Ramasse, Quentin
1 / 14 shared
Hage, Fredrik
1 / 2 shared
Pristovsek, Markus
1 / 3 shared
Han, Yisong
1 / 17 shared
Müller, Erich
1 / 7 shared
Maier, Pascal
1 / 3 shared
Wang, Junjun
1 / 1 shared
Leute, Robert A. R.
1 / 1 shared
Gerthsen, Dagmar
1 / 33 shared
Bernhard, Jörg
1 / 2 shared
Schirra, Martin
1 / 2 shared
Groiss, Heiko
1 / 14 shared
Frey, Manuel
1 / 1 shared
Biskupek, Johannes
1 / 18 shared
Feneberg, Martin
1 / 5 shared
Knab, Manuel
1 / 1 shared
Madel, Manfred
1 / 1 shared
Tischer, Ingo
1 / 1 shared
Kaiser, Ute
1 / 50 shared
Neuschl, Benjamin
1 / 1 shared
Hocker, Matthias
1 / 2 shared
Dieterle, Levin
1 / 2 shared
Wunderer, Thomas
1 / 1 shared
Simon, Ulrich
1 / 6 shared
Chart of publication period
2016
2015

Co-Authors (by relevance)

  • Müller-Caspary, K.
  • Rosenauer, A.
  • Heinz, D.
  • Hommel, D.
  • Thonke, Klaus
  • Madel, M.
  • Schowalter, M.
  • Mehrtens, Thorsten
  • Tischer, I.
  • Fikry, M.
  • Aschenbrenner, T.
  • Caliebe, Marian
  • Humphreys, Colin
  • Zhu, Tongtong
  • Ramasse, Quentin
  • Hage, Fredrik
  • Pristovsek, Markus
  • Han, Yisong
  • Müller, Erich
  • Maier, Pascal
  • Wang, Junjun
  • Leute, Robert A. R.
  • Gerthsen, Dagmar
  • Bernhard, Jörg
  • Schirra, Martin
  • Groiss, Heiko
  • Frey, Manuel
  • Biskupek, Johannes
  • Feneberg, Martin
  • Knab, Manuel
  • Madel, Manfred
  • Tischer, Ingo
  • Kaiser, Ute
  • Neuschl, Benjamin
  • Hocker, Matthias
  • Dieterle, Levin
  • Wunderer, Thomas
  • Simon, Ulrich
OrganizationsLocationPeople

article

Composition analysis of coaxially grown InGaN multi quantum wells using scanning transmission electron microscopy

  • Müller-Caspary, K.
  • Rosenauer, A.
  • Heinz, D.
  • Hommel, D.
  • Thonke, Klaus
  • Madel, M.
  • Schowalter, M.
  • Scholz, Ferdinand
  • Mehrtens, Thorsten
  • Tischer, I.
  • Fikry, M.
  • Aschenbrenner, T.
Abstract

<jats:p>GaN nanotubes with coaxial InGaN quantum wells were analyzed by scanning transmission electron microscopy in order to determine their structural properties as well as the indium distribution across the InGaN quantum wells. For the latter, two process steps are necessary. First, a technique to prepare cross-sectional slices out of the nanotubes has been developed. Second, an existing scanning transmission electron microscopy analysis technique has been extended with respect to the special crystallographic orientation of this type of specimen. In particular, the shape of the nanotubes, their defect structure, and the incorporation of indium on different facets were investigated. The quantum wells preferentially grow on m-planes of the dodecagonally shaped nanotubes and on semipolar top facets while no significant indium signal was found on a-planes. An averaged indium concentration of 6% to 7% was found by scanning transmission electron microscopy analysis and could be confirmed by cathodoluminescence measurements.</jats:p>

Topics
  • nanotube
  • transmission electron microscopy
  • defect
  • defect structure
  • Indium