People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lind, Erik
Lund University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023Low temperature atomic hydrogen annealing of InGaAs MOSFETscitations
- 2023Time evolution of surface species during the ALD of high-k oxide on InAscitations
- 2023Time evolution of surface species during the ALD of high-k oxide on InAscitations
- 2023Tuning of Quasi-Vertical GaN FinFETs Fabricated on SiC Substratescitations
- 2023Three-Dimensional Integration of InAs Nanowires by Template-Assisted Selective Epitaxy on Tungstencitations
- 2022Oxygen relocation during HfO2 ALD on InAscitations
- 2022Doping Profiles in Ultrathin Vertical VLS-Grown InAs Nanowire MOSFETs with High Performance.
- 2022Template-Assisted Selective Epitaxy of InAs on W
- 2021Doping Profiles in Ultrathin Vertical VLS-Grown InAs Nanowire MOSFETs with High Performancecitations
- 2020Atomic Layer Deposition of Hafnium Oxide on InAs : Insight from Time-Resolved in Situ Studiescitations
- 2020Atomic Layer Deposition of Hafnium Oxide on InAscitations
- 2016ZrO2 and HfO2 dielectrics on (001) n-InAs with atomic-layer-deposited in situ surface treatmentcitations
- 2016ZrO2 and HfO2 dielectrics on (001) n-InAs with atomic-layer-deposited in situ surface treatmentcitations
- 2014InAs nanowire MOSFETs in three-transistor configurations: single balanced RF down-conversion mixers.citations
- 2014Thin electron beam defined hydrogen silsesquioxane spacers for vertical nanowire transistorscitations
- 2013Interface characterization of metal-HfO2-InAs gate stacks using hard x-ray photoemission spectroscopy
- 2013Combining axial and radial nanowire heterostructures: Radial Esaki diodes and tunnel field-effect transistorscitations
- 2012Al2O3/InAs metal-oxide-semiconductor capacitors on (100) and (111)B substratescitations
- 2012High-Frequency Performance of Self-Aligned Gate-Last Surface Channel In0.53Ga0.47As MOSFETcitations
- 2011High Transconductance Self-Aligned Gate-Last Surface Channel In0.53Ga0.47As MOSFET
- 2011Interface composition of atomic layer deposited HfO2 and Al2O3 thin films on InAs studied by X-ray photoemission spectroscopycitations
- 2004Resonant tunneling permeable base transistor based pulsed oscillator
- 2004Tunneling Based Electronic Devices
Places of action
Organizations | Location | People |
---|
article
ZrO2 and HfO2 dielectrics on (001) n-InAs with atomic-layer-deposited in situ surface treatment
Abstract
<p>The electrical properties of ZrO<sub>2</sub> and HfO<sub>2</sub> gate dielectrics on n-InAs were evaluated. Particularly, an in situ surface treatment method including cyclic nitrogen plasma and trimethylaluminum pulses was used to improve the quality of the high-κ oxides. The quality of the InAs-oxide interface was evaluated with a full equivalent circuit model developed for narrow band gap metal-oxide-semiconductor (MOS) capacitors. Capacitance-voltage (C-V) measurements exhibit a total trap density profile with a minimum of 1 × 10<sup>12</sup> cm<sup>-2</sup> eV<sup>-1</sup> and 4 × 10<sup>12</sup> cm<sup>-2</sup> eV<sup>-1</sup> for ZrO<sub>2</sub> and HfO<sub>2</sub>, respectively, both of which are comparable to the best values reported for high-κ/III-V devices. Our simulations showed that the measured capacitance is to a large extent affected by the border trap response suggesting a very low density of interface traps. Charge trapping in MOS structures was also investigated using the hysteresis in the C-V measurements. The experimental results demonstrated that the magnitude of the hysteresis increases with increase in accumulation voltage, indicating an increase in the charge trapping response.</p>