Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Thayne, Iain

  • Google
  • 7
  • 33
  • 97

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2022Fabrication of Single-Crystalline InSb-on-Insulator by Rapid Melt Growth3citations
  • 2021Improved quality of InSb-on-insulator microstructures by flash annealing into melt7citations
  • 2019Optical properties of refractory metal based thin filmscitations
  • 2019Integration of InSb on Si by Rapid Melt Growthcitations
  • 2018Optical properties of refractory metal based thin films51citations
  • 2016Control of threshold voltage in E-mode and D-mode GaN-on-Si metal-insulator-semiconductor heterostructure field effect transistors by <i>in-situ</i> fluorine doping of atomic layer deposition Al2O3 gate dielectrics18citations
  • 2016Control of threshold voltage in E-mode and D-mode GaN-on-Si metal-insulator-semiconductor heterostructure field effect transistors by in-situ fluorine doping of atomic layer deposition Al2O3 gate dielectrics18citations

Places of action

Chart of shared publication
Athle, Robin
2 / 4 shared
Steer, Matthew
3 / 4 shared
Hetherington, Crispin
1 / 7 shared
Anna, Fontcuberta I. Morral
1 / 18 shared
Morgan, Nicholas Paul
1 / 1 shared
Menon, Heera
3 / 5 shared
Borg, Mattias
3 / 15 shared
Södergren, Lasse
1 / 1 shared
Johansson, Jonas
1 / 21 shared
Banerjee, Archan
2 / 4 shared
Morozov, Dmitry
2 / 2 shared
Hemakumara, Dilini
2 / 2 shared
Hadfield, Robert
1 / 1 shared
Heath, Robert
1 / 1 shared
Nasti, Umberto
2 / 2 shared
Wernersson, Lars-Erik
1 / 18 shared
Svensson, Johannes
1 / 9 shared
Hadfield, Robert H.
1 / 4 shared
Heath, Robert M.
1 / 1 shared
Humphreys, Colin
2 / 8 shared
Chalker, P. R.
1 / 5 shared
Lee, K. B.
1 / 2 shared
Cho, S. J.
1 / 3 shared
Wallis, D.
1 / 3 shared
Guiney, I.
1 / 2 shared
Roberts, Joseph
2 / 12 shared
Houston, P. A.
1 / 2 shared
Cho, S.-J.
1 / 2 shared
Lee, Kean Boon
1 / 2 shared
Chalker, Paul
1 / 8 shared
Guiney, Iver
1 / 1 shared
Wallis, David
1 / 13 shared
Houston, Peter
1 / 1 shared
Chart of publication period
2022
2021
2019
2018
2016

Co-Authors (by relevance)

  • Athle, Robin
  • Steer, Matthew
  • Hetherington, Crispin
  • Anna, Fontcuberta I. Morral
  • Morgan, Nicholas Paul
  • Menon, Heera
  • Borg, Mattias
  • Södergren, Lasse
  • Johansson, Jonas
  • Banerjee, Archan
  • Morozov, Dmitry
  • Hemakumara, Dilini
  • Hadfield, Robert
  • Heath, Robert
  • Nasti, Umberto
  • Wernersson, Lars-Erik
  • Svensson, Johannes
  • Hadfield, Robert H.
  • Heath, Robert M.
  • Humphreys, Colin
  • Chalker, P. R.
  • Lee, K. B.
  • Cho, S. J.
  • Wallis, D.
  • Guiney, I.
  • Roberts, Joseph
  • Houston, P. A.
  • Cho, S.-J.
  • Lee, Kean Boon
  • Chalker, Paul
  • Guiney, Iver
  • Wallis, David
  • Houston, Peter
OrganizationsLocationPeople

article

Control of threshold voltage in E-mode and D-mode GaN-on-Si metal-insulator-semiconductor heterostructure field effect transistors by <i>in-situ</i> fluorine doping of atomic layer deposition Al2O3 gate dielectrics

  • Humphreys, Colin
  • Chalker, P. R.
  • Lee, K. B.
  • Cho, S. J.
  • Thayne, Iain
  • Wallis, D.
  • Guiney, I.
  • Roberts, Joseph
  • Houston, P. A.
Abstract

<jats:p>We report the modification and control of threshold voltage in enhancement and depletion mode AlGaN/GaN metal-insulator-semiconductor heterostructure field effect transistors through the use of in-situ fluorine doping of atomic layer deposition Al2O3. Uniform distribution of F ions throughout the oxide thickness are achievable, with a doping level of up to 5.5 × 1019 cm−3 as quantified by secondary ion mass spectrometry. This fluorine doping level reduces capacitive hysteretic effects when exploited in GaN metal-oxide-semiconductor capacitors. The fluorine doping and forming gas anneal also induces an average positive threshold voltage shift of between 0.75 and 1.36 V in both enhancement mode and depletion mode GaN-based transistors compared with the undoped gate oxide via a reduction of positive fixed charge in the gate oxide from +4.67 × 1012 cm−2 to −6.60 × 1012 cm−2. The application of this process in GaN based power transistors advances the realisation of normally off, high power, high speed devices.</jats:p>

Topics
  • semiconductor
  • forming
  • spectrometry
  • secondary ion mass spectrometry
  • atomic layer deposition