People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Huang, Fuzhi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2017Low temperature reactively sputtered crystalline TiO2 thin film as effective blocking layer for perovskite solar cellscitations
- 2016Temperature dependent optical properties of CH3NH3PbI3 perovskite by spectroscopic ellipsometrycitations
- 2015Polaronic exciton binding energy in iodide and bromide organic-inorganic lead halide perovskitescitations
- 2014Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cellscitations
Places of action
Organizations | Location | People |
---|
article
Temperature dependent optical properties of CH3NH3PbI3 perovskite by spectroscopic ellipsometry
Abstract
<p>Mixed organic-inorganic halide perovskites have emerged as a promising new class of semiconductors for photovoltaics with excellent light harvesting properties. Thorough understanding of the optical properties of these materials is important for photovoltaic device optimization and the insight this provides for the knowledge of energy band structures. Here we present an investigation of the sub-room temperature dependent optical properties of polycrystalline thin films of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>perovskites that are of increasing interest for photovoltaics. The complex dielectric function of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>in the energy range of 0.5-4.1 eV is determined between 77 K and 297 K using spectroscopic ellipsometry. An increase in optical permittivity as the temperature decreases is illustrated for CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>. Optical transitions and critical points were analyzed using the energy dependent second derivative of these dielectric functions as a function of temperature.</p>