People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kyritsakis, Andreas
University of Tartu
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Polarization characteristics and structural modifications of Cu nanoparticles under high electric fields
- 2023Biased self-diffusion on Cu surface due to electric field gradientscitations
- 2023Critical review on experimental and theoretical studies of elastic properties of wurtzite-structured ZnO nanowirescitations
- 2022Thermal, Mechanical, and Acoustic Properties of Polydimethylsiloxane Filled with Hollow Glass Microspherescitations
- 2022Biased self-diffusion on Cu surface due to electric field gradientscitations
- 2020Tungsten migration energy barriers for surface diffusioncitations
- 2019Ab initio calculation of field emission from metal surfaces with atomic-scale defectscitations
- 2016Atomistic modeling of metal surfaces under high electric fieldscitations
- 2016Effects of control oxide material on the charging times of metal nanoparticles inside non-volatile memories
- 2016Extension of the general thermal field equation for nanosized emitterscitations
Places of action
Organizations | Location | People |
---|
article
Extension of the general thermal field equation for nanosized emitters
Abstract
<p>During the previous decade, Jensen et al. developed a general analytical model that successfully describes electron emission from metals both in the field and thermionic regimes, as well as in the transition region. In that development, the standard image corrected triangular potential barrier was used. This barrier model is valid only for planar surfaces and therefore cannot be used in general for modern nanometric emitters. In a recent publication, the authors showed that the standard Fowler-Nordheim theory can be generalized for highly curved emitters if a quadratic term is included to the potential model. In this paper, we extend this generalization for high temperatures and include both the thermal and intermediate regimes. This is achieved by applying the general method developed by Jensen to the quadratic barrier model of our previous publication. We obtain results that are in good agreement with fully numerical calculations for radii R > 4 nm, while our calculated current density differs by a factor up to 27 from the one predicted by the Jensen's standard General-Thermal-Field (GTF) equation. Our extended GTF equation has application to modern sharp electron sources, beam simulation models, and vacuum breakdown theory. (C) 2016 AIP Publishing LLC.</p>