People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Smith, Robert A.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2019A parametric study of segmentation thresholds for X-ray CT porosity characterisation in composite materialscitations
- 2019Fibre direction and stacking sequence measurement in carbon fibre composites using Radon transforms of ultrasonic datacitations
- 2018Characterisation of carbon fibre-reinforced polymer composites through radon-transform analysis of complex eddy-current datacitations
- 2018A numerical study on the influence of composite wrinkle defect geometry on compressive strengthcitations
- 2018Ply-orientation measurements in composites using structure-tensor analysis of volumetric ultrasonic datacitations
- 2018Ultrasonic Analytic-Signal Responses from Polymer-Matrix Composite Laminatescitations
- 20183D ultrasound characterization of woven compositescitations
- 2017Reshaping the testing pyramid: utilisation of data-rich NDT techniques as a Means to Develop a ‘High Fidelity’ Component and Sub-structure Testing Methodology for Composites
- 2017Ultrasonic detection and sizing of compressed cracks in glass- and carbon-fibre reinforced plastic compositescitations
- 2016Acoustic characterization of void distributions across carbon-fiber composite layerscitations
- 2016Acoustic characterization of void distributions across carbon-fiber composite layerscitations
- 2016Ultrasonic tracking of ply drops in composite laminatescitations
- 2016Non-destructive characterisation of composite microstructures
- 2015Progress in non-destructive 3D characterization and modelling of aerospace composites
- 2014Toward the 3D characterisation of GLARE and other fibre-metal laminate composites
- 2014Methods for fibre-orientation characterisation in monolithic carbon-fibre composites
- 20133D characterisation of fibre orientation and resulting material properties
- 2010Use of 3D ultrasound data sets to map the localised properties of fibre-reinforced composites
- 2010Use of 3D ultrasound data sets to map the localised properties of fibre-reinforced composites.
Places of action
Organizations | Location | People |
---|
document
Ultrasonic tracking of ply drops in composite laminates
Abstract
<p>As the shapes of composite components become more adventurous, tracking internal locations of ply drops and detecting any tape gaps or overlaps will be crucial to assure conformance to design. The true potential of ultrasound has yet to be exploited for this objective due to the apparent complexity of the ultrasonic response and the assumption that interference between signals from plies is random, confusing and of little use. As a result, most ultrasonic inspection of composites targets defects that either attenuate or reflect ultrasound, regarding ply reflections as undesirable 'noise'. The work presented here extends the ply-orientation mapping of the last two decades by introducing a systematic approach to optimizing the ultrasonic response from the plies, minimizing interference between plies and demonstrating that accurate maps of plies through ply-drop regions can be produced. The key to this method is understanding the ultrasonic analytic signal and how it interacts with plies and the resin-rich layers between them. In certain circumstances of frequency and bandwidth, the instantaneous phase locks onto the resin-rich layers and the instantaneous amplitude indicates the validity of this condition. Analytical modelling is used to explain the interaction between ultrasound and composite plies in various ply-drop scenarios, with reference to experimental results. Optimization of ultrasonic data acquisition is also discussed and demonstrated experimentally.</p>