People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sauer, Katrein
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2022Molecular differences in collagen organization and in organic-inorganic interfacial structure of bones with and without osteocytes.citations
- 2015Thermally driven smoothening of molecular thin films: Structural transitions in n-alkane layers studied in real-timecitations
- 2015Thermally driven smoothening of molecular thin films: Structural transitions in n-alkane layers studied in real-time.citations
Places of action
Organizations | Location | People |
---|
article
Thermally driven smoothening of molecular thin films: Structural transitions in n-alkane layers studied in real-time.
Abstract
We use thermal annealing to improve smoothness and to increase the lateral size of crystalline islands of n-tetratetracontane (TTC, C44H90) films. With in situ x-ray diffraction, we find an optimum temperature range leading to improved texture and crystallinity while avoiding an irreversible phase transition that reduces crystallinity again. We employ real-time optical phase contrast microscopy with sub-nm height resolution to track the diffusion of TTC across monomolecular step edges which causes the unusual smoothing of a molecular thin film during annealing. We show that the lateral island sizes increase by more than one order of magnitude from 0.5 μm to 10 μm. This desirable behavior of 2d-Ostwald ripening and smoothing is in contrast to many other organic molecular films where annealing leads to dewetting, roughening, and a pronounced 3d morphology. We rationalize the smoothing behavior with the highly anisotropic attachment energies and low surface energies for TTC. The results are technically relevant for the use of TTC as passivation layer and as gate dielectric in organic field effect transistors.