Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dierlamm, Alexander

  • Google
  • 1
  • 5
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Dielectric properties of semi-insulating silicon at microwave frequencies24citations

Places of action

Chart of shared publication
Kwestarz, Michał
1 / 1 shared
Krupka, Jerzy
1 / 120 shared
Kamiński, Paweł
1 / 3 shared
Kozłowski, Roman
1 / 1 shared
Surma, Barbara
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Kwestarz, Michał
  • Krupka, Jerzy
  • Kamiński, Paweł
  • Kozłowski, Roman
  • Surma, Barbara
OrganizationsLocationPeople

article

Dielectric properties of semi-insulating silicon at microwave frequencies

  • Kwestarz, Michał
  • Krupka, Jerzy
  • Kamiński, Paweł
  • Kozłowski, Roman
  • Surma, Barbara
  • Dierlamm, Alexander
Abstract

The permittivity and dielectric loss tangent of high-purity silicon with semi-insulating properties achieved by the irradiation with 23-MeV protons have been measured at frequencies from 1 GHz to 15 GHz. The dielectric losses were separated from the conductor losses on the basis of the total loss tangent measurements versus frequency. The resistivity measurements of the material performed at radio frequencies (RF) by means of the capacitance spectroscopy method have shown the non-uniform resistivity distribution in the direction perpendicular to the surface of the semi-insulating wafer. The excellent agreement between the resistivity measurements results at RF and those obtained by using microwave methods have been achieved. It has been confirmed that high-purity, semi-insulating silicon is practically non-dispersive and possesses extremely low dielectric losses that are constant to within experimental errors in the frequency range from 1 GHz to 350 GHz. In this frequency range, the dielectric loss tangent of semi-insulating silicon is equal to 1.2×10−5 .

Topics
  • impedance spectroscopy
  • surface
  • resistivity
  • Silicon