Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Barraud, Loris

  • Google
  • 1
  • 10
  • 399

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 201522.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector399citations

Places of action

Chart of shared publication
Despeisse, Matthieu
1 / 5 shared
Werner, Jérémie
1 / 6 shared
Geissbühler, Jonas
1 / 3 shared
Tomasi, Andrea
1 / 3 shared
Hessler-Wyser, Aïcha
1 / 14 shared
Wolf, Stefaan De
1 / 6 shared
Nicolas, Silvia Martin De
1 / 3 shared
Ballif, Christophe
1 / 23 shared
Nicolay, Sylvain
1 / 7 shared
Niesen, Bjoern
1 / 4 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Despeisse, Matthieu
  • Werner, Jérémie
  • Geissbühler, Jonas
  • Tomasi, Andrea
  • Hessler-Wyser, Aïcha
  • Wolf, Stefaan De
  • Nicolas, Silvia Martin De
  • Ballif, Christophe
  • Nicolay, Sylvain
  • Niesen, Bjoern
OrganizationsLocationPeople

article

22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector

  • Despeisse, Matthieu
  • Barraud, Loris
  • Werner, Jérémie
  • Geissbühler, Jonas
  • Tomasi, Andrea
  • Hessler-Wyser, Aïcha
  • Wolf, Stefaan De
  • Nicolas, Silvia Martin De
  • Ballif, Christophe
  • Nicolay, Sylvain
  • Niesen, Bjoern
Abstract

<jats:p>Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.</jats:p>

Topics
  • molybdenum
  • amorphous
  • copper
  • Silicon
  • annealing
  • curing