People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arras, Rémi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2022Multiple spintronic functionalities into single zinc-ferrous ferrite thin filmscitations
- 2021Nanostructured ZnFe2O4: An Exotic Energy Materialcitations
- 2018Noble Metal Nanocluster Formation in Epitaxial Perovskite Thin Filmscitations
- 2017Evolution of magnetic properties and damping coefficient of Co 2 MnSi Heusler alloy with Mn/Si and Co/Mn atomic disordercitations
- 2017Charge transfer and magnetization of a MoS 2 monolayer at the Co(0001)/MoS 2 interface
- 2017Strain induced atomic structure at the Ir-doped LaAlO 3 /SrTiO 3 interfacecitations
- 2017Electronic structure of the Co(0001)/MoS2 interface, and its possible use for electrical spin injection in a single MoS2 layercitations
- 2016First-principles electronic structure calculations for the whole spinel oxide solid solution range MnxCo3−xO4(0 ≤ x ≤ 3) and their comparison with experimental datacitations
- 2016First-principles electronic structure calculations for the whole spinel oxide solid solution range MnxCo3−xO4(0 ≤ x ≤ 3) and their comparison with experimental datacitations
- 2016First-principles electronic structure calculations for the whole spinel oxide solid solution range MnxCo3−xO4(0 ≤ x ≤ 3) and their comparison with experimental datacitations
- 2015Observation of the strain induced magnetic phase segregation in manganite thin filmscitations
- 2015Observation of the strain induced magnetic phase segregation in manganite thin filmscitations
- 2015Energy-loss magnetic chiral dichroism study of epitaxial MnAs film on GaAs(001)citations
- 2010Electronic structure near an antiphase boundary in magnetitecitations
Places of action
Organizations | Location | People |
---|
article
Energy-loss magnetic chiral dichroism study of epitaxial MnAs film on GaAs(001)
Abstract
The room-temperature ferromagnetic behavior of MnAs/GaAs(001) thin film has been locally explored by Transmission Electron Microscope (TEM). We first differentiated hexagonal α-MnAs and quasi-hexagonal β-MnAs which are very similar in atomic structure by electron diffraction. Local magnetic moment information of the identified α-MnAs was extracted from manganese-L2,3 edges using Energy-loss Magnetic Circular Dichroism technique and the ratio of orbital to spin magnetic moment was measured. In this experiment, atomic structure identification, chemical analysis, and magnetic moment measurement were simultaneously achieved at high spatial resolution in TEM, thus providing a potential method for in-situ study of local properties of multiphase magnetic materials.