Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fichtner, Paulo Fernando Papaleo

  • Google
  • 1
  • 4
  • 39

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Tuning the optoelectronic properties of amorphous MoOx films by reactive sputtering39citations

Places of action

Chart of shared publication
Fabrim, Zacarias Eduardo
1 / 4 shared
Cauduro, André Luis Fernandes
1 / 4 shared
Madsen, Morten
1 / 35 shared
Rubahn, Horst-Günter
1 / 51 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Fabrim, Zacarias Eduardo
  • Cauduro, André Luis Fernandes
  • Madsen, Morten
  • Rubahn, Horst-Günter
OrganizationsLocationPeople

article

Tuning the optoelectronic properties of amorphous MoOx films by reactive sputtering

  • Fabrim, Zacarias Eduardo
  • Fichtner, Paulo Fernando Papaleo
  • Cauduro, André Luis Fernandes
  • Madsen, Morten
  • Rubahn, Horst-Günter
Abstract

In this letter, we report on the effect of oxygen partial pressure and sputtering power on amorphous DC-sputtered MoOx films. We observe abrupt changes in the optoelectronic properties of the<br/>reported films by increasing the oxygen partial pressure from 1.00 ? 10?3 mbar to 1.37 ? 10?3 mbar during the sputtering process. A strong impact on the electrical conductivity, varying from<br/>1.6 ? 10?5 S/cm to 3.22 S/cm, and on the absorption coefficient in the range of 0.6–3.0 eV is observed for the nearly stoichiometric MoO3.00 and for the sub-stoichiometric MoO2.57 films, respectively, without modifying significantly the microstructure of the studied films. The presence of states within the band gap due to the lack of oxygen is the most probable mechanism for generat- ing a change in electrical conductivity as well as optical absorption in DC-sputtered MoOx. The large tuning range of the optoelectronic properties in these films holds strong promise for their implementation in optoelectronic devices.

Topics
  • impedance spectroscopy
  • microstructure
  • amorphous
  • Oxygen
  • reactive
  • electrical conductivity