People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Malfreyt, Patrice
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022Molecular interactions at the metal–liquid interfacescitations
- 2021Strain induced crystallization of polymers at and above the crystallization temperature by coarse-grained simulationscitations
- 2016Monte Carlo simulations of the static friction between two grafted polymer brushes.citations
- 2015Superpermittivity of nanoconfined water.citations
- 2014Concentration Dependence of the Dielectric Permittivity, Structure and Dynamics of Aqueous NaCl Solutions: Comparison between the Drude Oscillator and Electronic Continuum Models.citations
- 2013Nonequilibrium Molecular Simulations of New Ionic Lubricants at Metallic Surfaces: Prediction of the Friction
- 2013Nanoconfined Electrolyte Solutions in porous Hydrophilic Silica Membranes.citations
- 2013Novel ionic lubricants for amorphous carbon surfaces : a molecular modelling of the structure and friction.
- 2012Multiscale Modeling Approach toward the Prediction of Viscoelastic Properties of Polymers
Places of action
Organizations | Location | People |
---|
article
Superpermittivity of nanoconfined water.
Abstract
Nowadays, it is well established that the physical properties of confined liquids strongly differ from those in bulk phase. While dynamical and structural properties were strongly explored, dielectric properties are poorly studied despite their importance in the understanding and the modelling of molecular mechanism in a number of nano-applications such as nanofluidics, nanofiltration, and nanomedicine. Among them, the dielectric permittivity is probably one of the most important. The lack of knowledge about it strongly limits our ability to model fluid-material interactions and more generally our understanding of the behaviour of confined fluids. Recently, the dielectric permittivity of confined water in silica, Metal Organic Frameworks, and graphene materials was found to be slightly higher than the permittivity of water in bulk phase. In this work, the permittivity of water and dichloromethane confined in carbon nanotubes was predicted by means of molecular dynamics simulations. The static dielectric constant was found to be 700, i.e., 10-fold higher than the bulk value. This superpermittivity has, for origin, the excluded volume and the presence of an unconfined direction leading to a pre-orientation of water molecules close to the pore wall and an increase in dipolar fluctuations.