Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Daniel, L.

  • Google
  • 11
  • 38
  • 109

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2024Domain switching and shear-mode piezoelectric response induced by cross-poling in polycrystalline ferroelectrics1citations
  • 2018The anhysteretic polarisation of ferroelectrics6citations
  • 2018Design of Matching Layers for Increasing the Electrical Field Penetration inside Human Tissue1citations
  • 2018Temperature-dependent anhysteretic behavior of co-doped PZT8citations
  • 2016Structure and ferroelectric behaviour of Na0.5Bi0.5TiO3-KNbO3 ceramics16citations
  • 2016Analysis of the state of poling of lead zirconate titanate (PZT) particles in a Zn-ionomer composite:citations
  • 2016Losses Approximation for Soft Magnetic Composites Based on a Homogenized Equivalent Conductivity3citations
  • 2016Hysteresis modelling of GO laminations for arbitrary in-plane directions taking into account the dynamics of orthogonal domain walls22citations
  • 2016Structure and ferroelectric behaviour of Na 0.5 Bi 0.5 TiO 3 -KNbO 3 ceramics16citations
  • 2015Revisiting the blocking force test on ferroelectric ceramics using high energy x-ray diffraction30citations
  • 2015Comparative analysis of thermal stability of two different nc-TiC/a-C:H coatings6citations

Places of action

Chart of shared publication
Kleppe, A. K.
3 / 3 shared
Condie, A.
1 / 1 shared
Comyn, T. P.
3 / 6 shared
Watson, M.
1 / 6 shared
Withers, Philip
2 / 45 shared
Hall, David
2 / 17 shared
Segouin, V.
2 / 2 shared
Kaeswurm, B.
2 / 4 shared
Webber, Kyle G.
3 / 145 shared
Genovesi, S.
1 / 8 shared
Butterworth, I.
1 / 1 shared
Hall, David A.
1 / 51 shared
Wang, G.
1 / 41 shared
Comyn, T.
1 / 6 shared
Hall, D.
1 / 3 shared
Groen, W. A.
1 / 25 shared
James, N. K.
1 / 4 shared
Kleppe, A.
1 / 3 shared
Zwaag, S. Van Der
1 / 35 shared
Ren, Xiaotao
1 / 4 shared
Corcolle, Romain
1 / 6 shared
Baghel, A. P. S.
1 / 1 shared
Kulkarni, S. V.
1 / 1 shared
Chwastek, K.
1 / 2 shared
Sai Ram, B.
1 / 1 shared
Wang, Gang
1 / 23 shared
Hall, D. A.
1 / 4 shared
King, A.
1 / 44 shared
Koruza, Jurij
1 / 50 shared
Buršíková, V.
1 / 29 shared
Souček, P.
1 / 17 shared
Peřina, V.
1 / 20 shared
Caha, O.
1 / 12 shared
Sťahel, P.
1 / 2 shared
Zábranský, L.
1 / 14 shared
Vašina, P.
1 / 18 shared
Dugáček, J.
1 / 1 shared
Buršík, J.
1 / 72 shared
Chart of publication period
2024
2018
2016
2015

Co-Authors (by relevance)

  • Kleppe, A. K.
  • Condie, A.
  • Comyn, T. P.
  • Watson, M.
  • Withers, Philip
  • Hall, David
  • Segouin, V.
  • Kaeswurm, B.
  • Webber, Kyle G.
  • Genovesi, S.
  • Butterworth, I.
  • Hall, David A.
  • Wang, G.
  • Comyn, T.
  • Hall, D.
  • Groen, W. A.
  • James, N. K.
  • Kleppe, A.
  • Zwaag, S. Van Der
  • Ren, Xiaotao
  • Corcolle, Romain
  • Baghel, A. P. S.
  • Kulkarni, S. V.
  • Chwastek, K.
  • Sai Ram, B.
  • Wang, Gang
  • Hall, D. A.
  • King, A.
  • Koruza, Jurij
  • Buršíková, V.
  • Souček, P.
  • Peřina, V.
  • Caha, O.
  • Sťahel, P.
  • Zábranský, L.
  • Vašina, P.
  • Dugáček, J.
  • Buršík, J.
OrganizationsLocationPeople

article

Revisiting the blocking force test on ferroelectric ceramics using high energy x-ray diffraction

  • King, A.
  • Daniel, L.
  • Koruza, Jurij
  • Webber, Kyle G.
  • Withers, Philip
  • Hall, David
Abstract

The blocking force test is a standard test to characterise the properties of piezoelectric actuators. The aim of this study is to understand the various contributions to the macroscopic behaviour observed during this experiment that involves the intrinsic piezoelectric effect, ferroelectric domain switching, and internal stress development. For this purpose, a high energy diffraction experiment is performed in-situ during a blocking force test on a tetragonal lead zirconate titanate (PZT) ceramic (Pb0.98Ba0.01(Zr0.51Ti0.49)0.98Nb0.02O3). It is shown that the usual macroscopic linear interpretation of the test can also be performed at the single crystal scale, allowing the identification of local apparent piezoelectric and elastic properties. It is also shown that despite this apparent linearity, the blocking force test involves significant non-linear behaviour mostly due to domain switching under electric field and stress. Although affecting a limited volume fraction of the material, domain switching is responsible for a large part of the macroscopic strain and explains the high level of inter- and intra-granular stresses observed during the course of the experiment. The study shows that if apparent piezoelectric and elastic properties can be identified for PZT single crystals from blocking stress curves, they may be very different from the actual properties of polycrystalline materials due to the multiplicity of the physical mechanisms involved. These apparent properties can be used for macroscopic modelling purposes but should be considered with caution if a local analysis is aimed at.

Topics
  • impedance spectroscopy
  • single crystal
  • x-ray diffraction
  • experiment
  • ceramic