People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alfadhel, Ahmed
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2016Magnetically Triggered Monodispersed Nanocomposite Fabricated by Microfluidic Approach for Drug Deliverycitations
- 2016A Magnetoresistive Tactile Sensor for Harsh Environment Applicationscitations
- 2016Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applicationscitations
- 2016Magnetic Nanocomposite Cilia Energy Harvestercitations
- 2016Fabrication and characterization of magnetic composite membrane pressure sensorcitations
- 2016Tunable magnetic nanowires for biomedical and harsh environment applicationscitations
- 2016A single magnetic nanocomposite cilia force sensorcitations
- 2016Magnetic nanocomposite sensor
- 2016Magnetic Tactile Sensor for Braille Readingcitations
- 2015Magnetic Nanocomposite Cilia Tactile Sensorcitations
- 2015Biomimetic magnetic nanocomposite for smart skinscitations
- 2015Magnetoelectric polymer nanocomposite for flexible electronicscitations
- 2015Magnetic micropillar sensors for force sensingcitations
- 2014Magnetic polymer nanocomposites for sensing applicationscitations
- 2014A magnetic nanocomposite for biomimetic flow sensingcitations
- 2012Microfabrication of magnetostrictive beams based on NiFe film doped with B and Mo for integrated sensor systemscitations
Places of action
Organizations | Location | People |
---|
article
Magnetoelectric polymer nanocomposite for flexible electronics
Abstract
This paper reports the fabrication and characterization of a new type of magnetoelectric polymer nanocomposite that exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of high aspect ratio ferromagnetic iron nanowires embedded inside a ferroelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE). The nanocomposite has been fabricated via a simple low temperature spin coating technique. Structural, ferromagnetic, ferroelectric, and magnetoelectric properties of the developed nanocomposite have been characterized. The nanocomposite films showed isotropic magnetic properties due to the random orientation of the iron nanowires inside the film. In addition, the embedded nanowires did not hinder the ferroelectric phase development of the nanocomposite. The developed nanocomposite showed a high magnetoelectric coupling response of 156 mV/cmOe measured at 3.1 kOe DC bias field. This value is among the highest reported magnetoelectric coupling in two phase particulate polymer nanocomposites.