People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nadaud, Kevin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2024Subcoercive-field dielectric response of 0.5 (Ba 0.7 Ca 0.3 TiO 3 ) -0.5 (BaZr 0.2 Ti 0.8 O 3 ) thin film: peculiar third harmonic signature of phase transitions and residual ferroelectricitycitations
- 2024Active and passive electronic interfaces adapted to a capacitive micromachined ultrasonic transducer (CMUT) used in acoustic energy transfercitations
- 2024BCTZ lead free thin films with Ce doping gradient: enhanced piezoelectricity and relaxor behaviour
- 2024Enhanced piezoelectricity properties and relaxor behaviour in (Ce, Y) co-doped BCTZ thin films libraries
- 2023Subcoercive-field dielectric response of 0.5 (Ba 0.7 Ca 0.3 TiO 3 ) -0.5 (BaZr 0.2 Ti 0.8 O 3 ) thin film: peculiar third harmonic signature of phase transitions and residual ferroelectricity
- 2023Active and passive electronic interfaces adapted to a capacitive micromachined ultrasonic transducer (CMUT) used in acoustic energy transfer
- 2022Real‐time capturing of microscale events controlling the sintering of lead‐free piezoelectric potassium‐sodium niobatecitations
- 2022Multifunctional energy storage and piezoelectric properties of 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 thick films on stainless-steel substratescitations
- 2022Effect of thermal annealing on dielectric and ferroelectric properties of aerosol-deposited 0.65Pb(Mg1/3Nb2/3)O3-0.35 PbTiO3 thick filmscitations
- 2022Low-Temperature Hydrothermal Growth of ZnO Nanowires on AZO Substrates for FACsPb(IBr)3 Perovskite Solar Cellscitations
- 2022Multifunctional energy storage and piezoelectric properties of 0.65Pb(Mg 1/3 Nb 2/3 )O 3 –0.35PbTiO 3 thick films on stainless-steel substratescitations
- 2022Influence of bottom electrode and seed layer on the growth of ZnO nanowires for vibrational energy harvesting
- 2020Tetragonal tungsten bronze phase thin films in the K–Na–Nb–O system: Pulsed laser deposition, structural and dielectric characterizationscitations
- 2019Deposition Time and Annealing Effects of ZnO Seed Layer on Enhancing Vertical Alignment of Piezoelectric ZnO Nanowirescitations
- 2019Deposition Time and Annealing Effects of ZnO Seed Layer on Enhancing Vertical Alignment of Piezoelectric ZnO Nanowirescitations
- 2019Challenges of low-temperature synthesized ZnO nanostructures and their integration into nano-systemscitations
- 2019Challenges of low-temperature synthesized ZnO nanowires and their integration into nanogenerators
- 2019Annealing and Thickness Effects of ZnO Seed Layer on Improving Alignment of ZnO NWs for Piezoelectric Nanogenerator Application
- 2018Organic/Inorganic Hybrid Stretchable Piezoelectric Nanogenerators for Self-Powered Wearable Electronicscitations
- 2018Organic/Inorganic Hybrid Stretchable Piezoelectric Nanogenerators for Self‐Powered Wearable Electronicscitations
- 2018Challenges of low-temperature synthesized ZnO nanostructures and their integration into nano-systemscitations
- 2017Effect of the incident power on permittivity, losses and tunability of BaSrTiO<sub>3</sub> thin films in the microwave frequency rangecitations
- 2017Effect of the incident power on permittivity, losses and tunability of BaSrTiO 3 thin films in the microwave frequency rangecitations
- 2017Zinc oxide nanowire-parylene nanocomposite based stretchable piezoelectric nanogenerators for self-powered wearable electronicscitations
- 2016Domain wall motions in BST ferroelectric thin films in the microwave frequency rangecitations
- 2016Description of domain wall motions by the hyperbolic law
- 2016Decomposition of the different contributions to permittivity, losses, and tunability in BaSrTiO3 thin films using the hyperbolic lawcitations
- 2015Effect of Manganese Doping of BaSrTiO 3 on Diffusion and Domain Wall Pinningcitations
- 2015Temperature stable BaSrTiO3 thin films suitable for microwave applicationscitations
- 2013A new method of dielectric characterization in the microwave range for high-k ferroelectric thin filmscitations
Places of action
Organizations | Location | People |
---|
article
Effect of Manganese Doping of BaSrTiO 3 on Diffusion and Domain Wall Pinning
Abstract
International audience ; In the present paper, the influence of manganese doping on the dielectric properties of BaSrTiO 3 thin films is presented. The real and imaginary parts of the material's permittivity have been measured in a large frequency range (100 Hz – 1 MHz) and as a function of the electric field. The tunability and the figure of merit of the material have been obtained from the measurement of the permittivity under an applied DC bias electric field. For the undoped material, the dielectric losses become important for a large DC bias which leads to breakdown. At a suitable dopant rate, this effect disappears. In order to better understand the origin of the related phenomena, we measure the permittivity as a function of the AC excitation amplitude and we decompose the obtained permittivity with the hyperbolic law. This enables to extract the different contributions of the bulk (low frequency diffusion and high frequency lattice relaxation) and of the domain wall motions (vibration and pinning/unpinning) to the material's dielectric permittivity and to understand the effect of manganese doping on each contribution. Knowledge of the related mechanisms allows us to establish the optimum dopant rate (mainly conditioned by the lattice contribution) and to reduce the domain wall motion, which finally is beneficial for the desired properties of the ferroelectric thin film. A particular attention is paid to low frequency diffusion, an especially harmful effect when a DC biasing is mandatory (tunable electronic component in mobile telecommunication devices for example).