Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nakagawa, S.

  • Google
  • 2
  • 8
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018A Broadband Laboratory Study of the Seismic Properties of Cracked and Fluid-Saturated Synthetic Glass Mediacitations
  • 2015Magnetic anisotropy of [Co2MnSi/Pd]n superlattice films prepared on MgO(001), (110), and (111) substrates16citations

Places of action

Chart of shared publication
Kneafsey, Tj
1 / 1 shared
Schmitt, Dr
1 / 1 shared
David, Ec
1 / 4 shared
Jackson, I.
1 / 7 shared
Li, Y.
1 / 95 shared
Fujino, Y.
1 / 1 shared
Sonobe, Y.
1 / 1 shared
Matsushita, N.
1 / 1 shared
Chart of publication period
2018
2015

Co-Authors (by relevance)

  • Kneafsey, Tj
  • Schmitt, Dr
  • David, Ec
  • Jackson, I.
  • Li, Y.
  • Fujino, Y.
  • Sonobe, Y.
  • Matsushita, N.
OrganizationsLocationPeople

article

Magnetic anisotropy of [Co2MnSi/Pd]n superlattice films prepared on MgO(001), (110), and (111) substrates

  • Fujino, Y.
  • Sonobe, Y.
  • Matsushita, N.
  • Nakagawa, S.
Abstract

Superlattice films with full-Heusler Co2MnSi (CMS) alloy and Pd layers prepared on Pd-buffered MgO(001), (110), and (111) substrates were investigated. Crystal orientation and epitaxial relationship of Pd and CMS layers were analyzed from x-ray diffraction, pole figure measurements, and transmission electron microscope observation. Formation of the L21-ordered structure in the CMS layers was confirmed by observation of CMS(111) diffraction. Perpendicular magnetic anisotropy (PMA) was obtained in the [CMS (0.6 nm)/Pd (2 nm)]6 superlattice film formed using MgO(111) substrates although other superlattice films prepared using MgO(001) and (110) substrates showed in-plane and isotropic magnetic anisotropy, respectively. The perpendicular magnetic anisotropy energy constant K for the superlattice films prepared using MgO(111) substrate was estimated to be 2.3 Mergs/cm3, and an interfacial anisotropy constant K i per one CMS-Pd interface in the superlattice films was estimated to be 0.16 ergs/cm2. K i in superlattice films with various crystal orientations showed positive values, indicating that Pd/CMS interfaces had an ability to induce PMA regardless of their crystal orientation.

Topics
  • x-ray diffraction
  • isotropic
  • interfacial