Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

De, D. M. Leeuw

  • Google
  • 4
  • 10
  • 758

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2014Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide4citations
  • 2012Role of hole injection in electroforming of LiF-polymer memory diodes10citations
  • 2010Trapping of electrons in metal oxide-polymer memory diodes in the initial stage of electroforming19citations
  • 2009Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logic and photovoltaics725citations

Places of action

Chart of shared publication
Bory, B. F.
3 / 9 shared
Wang, J.
1 / 86 shared
Meskers, Stefan C. J.
3 / 29 shared
Janssen, René A. J.
4 / 151 shared
Gomes, H. L.
3 / 11 shared
Zoombelt, A. P.
1 / 6 shared
Wienk, M. M.
1 / 54 shared
Bijleveld, J. C.
1 / 8 shared
Mathijssen, S. G. J.
1 / 3 shared
Turbiez, M. G. R.
1 / 12 shared
Chart of publication period
2014
2012
2010
2009

Co-Authors (by relevance)

  • Bory, B. F.
  • Wang, J.
  • Meskers, Stefan C. J.
  • Janssen, René A. J.
  • Gomes, H. L.
  • Zoombelt, A. P.
  • Wienk, M. M.
  • Bijleveld, J. C.
  • Mathijssen, S. G. J.
  • Turbiez, M. G. R.
OrganizationsLocationPeople

article

Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

  • Bory, B. F.
  • Wang, J.
  • De, D. M. Leeuw
  • Meskers, Stefan C. J.
  • Janssen, René A. J.
  • Gomes, H. L.
Abstract

Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 1025/m3. The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics.

Topics
  • density
  • impedance spectroscopy
  • polymer
  • semiconductor
  • defect
  • tin
  • Indium