People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vickridge, Ian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Exploring OH incorporation pathways in pulsed laser deposited EuOOH thin films
- 2021The carbon and hydrogen contents in ALD-grown ZnO films define a narrow ALD temperature windowcitations
- 2020Harnessing Atomic Layer Deposition and Diffusion to Spatially Localize Rare-Earth Ion Emitterscitations
- 2020Low resistivity amorphous carbon-based thin films employed as anti-reflective coatings on coppercitations
- 2017XPS and NRA investigations during the fabrication of gold nanostructured functionalized screen-printed sensors for the detection of metallic pollutantscitations
- 2015Rutherford Backscattering Spectrometry analysis of iron-containing Bi2Se3 Topological Insulator thin filmscitations
- 2014Multicharacterization approach for studying InAl(Ga)N/Al(Ga)N/GaN heterostructures for high electron mobility transistorscitations
- 2011Ferromagnetism in Ga0.90Mn0.10As1-yPy: From the metallic to the impurity band conduction regimecitations
- 2008Li-ion intercalation in thermal oxide thin films of MoO3 as studied by XPS, RBS, and NRAcitations
- 2007Ageing of V2O5 thin films induced by Li intercalation multi-cyclingcitations
- 2006TaSiN diffusion barriers deposited by reactive magnetron sputteringcitations
- 2005Characterization of SiC thin film obtained by magnetron reactive sputtering : IBA, IR and Raman studies
- 2005Influence of substrate temperature on growth of nanocrystalline silicon carbide by reactive magnetron sputteringcitations
- 2005Control of the reactivity at a metal/silica interfacecitations
- 2004Characterization of SiC thin film obtained by magnetron reactive sputtering : IBA, IR and Raman studies
- 2004Study of thin hafnium oxides deposited by atomic layer depositioncitations
- 2002Oxygen isotopic exchange occurring during dry thermal oxidation of 6H SiCcitations
Places of action
Organizations | Location | People |
---|
article
Multicharacterization approach for studying InAl(Ga)N/Al(Ga)N/GaN heterostructures for high electron mobility transistors
Abstract
We report on our multi–pronged approach to understand the structural and electrical properties of an InAl(Ga)N(33nm barrier)/Al(Ga)N(1nm interlayer)/GaN(3μm)/ AlN(100nm)/Al2O3 high electron mobility transistor (HEMT) heterostructure grown by metal organic vapor phase epitaxy (MOVPE). In particular we reveal and discuss the role of unintentional Ga incorporation in the barrier and also in the interlayer. The observation of unintentional Ga incorporation by using energy dispersive X–ray spectroscopy analysis in a scanning transmission electron microscope is supported with results obtained for samples with a range of AlN interlayer thicknesses grown under both the showerhead as well as the horizontal type MOVPE reactors. Poisson–Schrödinger simulations show that for high Ga incorporation in the Al(Ga)N interlayer, an additional triangular well with very small depth may be exhibited in parallel to the main 2–DEG channel. The presence of this additional channel may cause parasitic conduction and severe issues in device characteristics and processing. Producing a HEMT structure with InAlGaN as the barrier and AlGaN as the interlayer with appropriate alloy composition may be a possible route to optimization, as it might be difficult to avoid Ga incorporation while continuously depositing the layers using the MOVPE growth method. Our present work shows the necessity of a multicharacterization approach to correlate structural and electrical properties to understand device structures and their performance.