Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schawe, Jürgen E. K.

  • Google
  • 14
  • 28
  • 443

ETH Zurich

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2024The glass transition temperature of anhydrous amorphous calcium carbonatecitations
  • 2024The glass transition temperature of anhydrous amorphous calcium carbonate1citations
  • 2023Glass transition temperatures and crystallization kinetics of a synthetic, anhydrous, amorphous calcium-magnesium carbonate6citations
  • 2023Fast differential scanning calorimetry to mimic additive manufacturing processing: specific heat capacity analysis of aluminium alloys8citations
  • 2022Kinetics of the Glass Transition of Silica-Filled Styrene–Butadiene Rubber: The Effect of Resinscitations
  • 2021Kinetics of the glass transition of styrene-butadiene-rubber : Dielectric spectroscopy and fast differential scanning calorimetrycitations
  • 2020Thermodynamics of polymorphism in a bulk metallic glass28citations
  • 2019Existence of multiple critical cooling rates which generate different types of monolithic metallic glass112citations
  • 2017Nucleation efficiency of fillers in polymer crystallization studied by fast scanning calorimetry: Carbon nanotubes in polypropylene59citations
  • 2016Solid–solid phase transitions via melting in metals86citations
  • 2016Cooling rate dependence of the crystallinity at nonisothermal crystallization of polymers: A phenomenological model38citations
  • 2015Dynamic mechanical properties of very thin adhesive joints11citations
  • 2015The Gibbs free energy difference between a supercooled melt and the crystalline phase of polymers12citations
  • 2014Vitrification in a wide cooling rate range: The relations between cooling rate, relaxation time, transition width, and fragility82citations

Places of action

Chart of shared publication
Weidendorfer, Daniel
1 / 3 shared
Sturm, Elena V.
3 / 10 shared
Griesshaber, Erika
2 / 16 shared
Sturm, Sebastian
3 / 4 shared
Dietzel, Martin
1 / 20 shared
Dingwell, Donald B.
1 / 14 shared
Purgstaller, Bettina
3 / 4 shared
Müller-Caspary, Knut
3 / 9 shared
Goetschl, Katja E.
3 / 4 shared
Hess, Kai-Uwe
3 / 10 shared
Wilding, Martin
3 / 6 shared
Bissbort, Thilo
2 / 2 shared
Schmahl, Wolfgang
3 / 3 shared
Pogatscher, Stefan
2 / 61 shared
Quick, Cameron
1 / 1 shared
Dumitraschkewitz, Phillip
1 / 10 shared
Lacayo-Pineda, Jorge
2 / 3 shared
Lindemann, Niclas
2 / 3 shared
Löffler, Jörg F.
1 / 22 shared
Löffler, Jörgf.
1 / 4 shared
Alig, Ingo
1 / 20 shared
Pötschke, Petra
1 / 330 shared
Uggowitzer, P. J.
1 / 16 shared
Leutenegger, D.
1 / 2 shared
Löffler, J. F.
1 / 15 shared
Pogatscher, S.
1 / 6 shared
Possart, Wulff
1 / 5 shared
Krogh, Ludovic
1 / 2 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2017
2016
2015
2014

Co-Authors (by relevance)

  • Weidendorfer, Daniel
  • Sturm, Elena V.
  • Griesshaber, Erika
  • Sturm, Sebastian
  • Dietzel, Martin
  • Dingwell, Donald B.
  • Purgstaller, Bettina
  • Müller-Caspary, Knut
  • Goetschl, Katja E.
  • Hess, Kai-Uwe
  • Wilding, Martin
  • Bissbort, Thilo
  • Schmahl, Wolfgang
  • Pogatscher, Stefan
  • Quick, Cameron
  • Dumitraschkewitz, Phillip
  • Lacayo-Pineda, Jorge
  • Lindemann, Niclas
  • Löffler, Jörg F.
  • Löffler, Jörgf.
  • Alig, Ingo
  • Pötschke, Petra
  • Uggowitzer, P. J.
  • Leutenegger, D.
  • Löffler, J. F.
  • Pogatscher, S.
  • Possart, Wulff
  • Krogh, Ludovic
OrganizationsLocationPeople

article

Vitrification in a wide cooling rate range: The relations between cooling rate, relaxation time, transition width, and fragility

  • Schawe, Jürgen E. K.
Abstract

<jats:p>The cooling rate dependence of the thermal glass transition of polystyrene (PS) is measured in a range between 0.2 K/min (0.003 K/s) and 4000 K/s using conventional differential scanning calorimetry (DSC) and Fast Scanning Calorimetry (Flash DSC 1). The cooling rate dependence of the thermal glass transition can be described in an analogy to the frequency dependence of the dynamic glass transition. The relation between cooling rate, βc, and frequency, ω, is usually described by the Frenkel-Kobeko-Reiner-(FKR) hypothesis βc/ω = C, where C is a constant. We have introduced a new property to describe the kinetics of the vitrification process; the vitrification function, κ. This function is the ratio between the width of the thermal and dynamic glass transition. The validity of the FKR hypothesis is analyzed by two independent methods, the analysis of the activation diagram using the Vogel-Fulcher-Tammann-Hesse equation and the analysis of the temperature dependence of the transition width. We derived a relation for the FKR-constant, which indicates the validity range of the FKR hypotheses. This hypothesis is valid if the logarithmic width of the vitrified and the non-vitrified relaxation spectrum is temperature invariant. This condition is fulfilled for polystyrene in the measured cooling rate range. Furthermore we discuss the relation between the vitrification function, the transition width, the FKR constant, and the fragility.</jats:p>

Topics
  • impedance spectroscopy
  • glass
  • glass
  • differential scanning calorimetry
  • activation