People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Eich, Manfred
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024On the applicability of the Maxwell Garnett effective medium model to media with a high density of cylindrical porescitations
- 2024Demystifying the semiconductor-to-metal transition in amorphous Vanadium pentoxide: the role of substrate/thin film interfaces
- 2024Demystifying the Semiconductor-to-Metal Transition in Amorphous Vanadium Pentoxidecitations
- 2024Demystifying the Semiconductor‐to‐Metal Transition in Amorphous Vanadium Pentoxide: The Role of Substrate/Thin Film Interfaces
- 2024Demystifying the Semiconductor-to-Metal Transition in Amorphous Vanadium Pentoxide:The Role of Substrate/Thin Film Interfacescitations
- 2023Chemical interface damping by electrochemical oxidation of gold
- 2022Nanoporous gold as an active plasmonic metamaterial
- 2021Influence of Alumina Addition on the Optical Properties and the Thermal Stability of Titania Thin Films and Inverse Opals Produced by Atomic Layer Deposition
- 2019Advancing the fabrication of YSZ-inverse photonic glasses for broadband omnidirectional reflector films
- 2018Photonic glass for high contrast structural color
- 2018Photonic glass for high contrast structural color
- 2018Photonic materials for high-temperature applications: synthesis and characterization by X-ray ptychographic tomography
- 2015Enhanced structural and phase stability of titania inverse opalscitations
- 2015Mechanism that governs the electro-optic response of second-order nonlinear polymers on silicon substratescitations
- 2015Yttria-stabilized zirconia microspheres: Novel building blocks for high-temperature photonics
- 2014Modification of a Teng-Man technique to measure both r33 and r13 electro-optic coefficientscitations
- 2014Electrical and electro-optic characterization of nonlinear polymer thin films on silicon substrate
- 2013Fabrication of high Q-cavities with functional polymer cladding
- 2013High Q silicon photonic crystal cavities for functional cladding materials
- 2013Configurable silicon photonic crystal waveguidescitations
- 2013Configurable silicon photonics with electron beam bleaching
- 2012Trimming of high-Q-factor silicon ring resonators by electron beam bleachingcitations
- 2012Photonic crystal cavity definition by electron beam bleaching of chromophore doped polymer claddingcitations
- 2012Four wave mixing in silicon hybrid and silicon heterogeneous micro photonic structurescitations
- 2010Hybrid silicon-organic racetrack resonator designs for electro-optical modulationcitations
- 2009Electro-optical modulator in a polymer-infiltrated silicon slotted photonic crystal waveguide heterostructure resonator
Places of action
Organizations | Location | People |
---|
article
Modification of a Teng-Man technique to measure both r33 and r13 electro-optic coefficients
Abstract
In this paper, we present a modified Teng-Man method to measure both electro-optic coefficients in a single measurement. Using our method, we confirm a linear dependence between the applied poling field and the measured electro-optic coefficients. The ratio between the two electro-optic coefficients is close to three, which is theoretically expected from a weakly oriented polymer film. Since conductive silicon is used as substrate, no auxiliary layers of transparent oxide or metal are required on the substrate, which simplifies both the sample preparation and the evaluation of the results.