People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Timofeeva, Maria
Alfsen og Gunderson (Norway)
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Metal-organic framework single crystal for in-memory neuromorphic computing with a light controlcitations
- 2020Engineering of the Second‐Harmonic Emission Directionality with III–V Semiconductor Rod Nanoantennascitations
- 2020Forward and Backward Switching of Nonlinear Unidirectional Emission from GaAs Nanoantennascitations
- 2014Nanothermal characterization of amorphous and crystalline phases in chalcogenide thin films with scanning thermal microscopycitations
Places of action
Organizations | Location | People |
---|
article
Nanothermal characterization of amorphous and crystalline phases in chalcogenide thin films with scanning thermal microscopy
Abstract
The thermal properties of amorphous and crystalline phases in chalcogenide phase change materials (PCM) play a key role in device performance for non-volatile random-access memory. Here, we report the nanothermal morphology of amorphous and crystalline phases in laser pulsed GeTe and Ge2Sb2Te5 thin films by scanning thermal microscopy (SThM). By SThM measurements and quantitative finite element analysis simulations of two film thicknesses, the PCM thermal conductivities and thermal boundary conductances between the PCM and SThM probe are independently estimated for the amorphous and crystalline phase of each stoichiometry.