Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Branicio, P. S.

  • Google
  • 2
  • 2
  • 77

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2014Planar fault energies of copper at large strain4citations
  • 2013Effect of strain on the stacking fault energy of copper73citations

Places of action

Chart of shared publication
Zhang, J. Y.
2 / 3 shared
Srolovitz, David
2 / 65 shared
Chart of publication period
2014
2013

Co-Authors (by relevance)

  • Zhang, J. Y.
  • Srolovitz, David
OrganizationsLocationPeople

article

Planar fault energies of copper at large strain

  • Zhang, J. Y.
  • Branicio, P. S.
  • Srolovitz, David
Abstract

We present density functional theory calculations of the extrinsic stacking fault energy <i>γ</i><sub>esf</sub>, twin fault energy <i>γ</i><sub>tf</sub>, and unstable stacking fault energy <i>γ</i><sub>usf</sub> of copper under large strains, up to ± 10%. The calculated values of <i>γ</i><sub>esf</sub>, <i>γ</i><sub>tf</sub>, and <i>γ</i><sub>usf</sub> for unstrained Cu are 41.8 mJ/m<sup>2</sup>, 20.2 mJ/m<sup>2</sup>, and 163.4 mJ/m<sup>2</sup>, respectively, in good agreement with experimental data and theoretical results. Four different types of strains are applied: (i) volumetric strain; (ii) uniaxial strain perpendicular to the fault plane; (III) uniaxial strains parallel to the fault plane; and (iv) shear strains across the fault planes. We find that <i>γ</i><sub>esf</sub>, <i>γ</i><sub>tf</sub>, and <i>γ</i><sub>usf</sub> are strongly dependent on the magnitude and type of strain, challenging the common conception that they are constant material properties. The predicted strong strain dependencies provide useful insight into the deformation mechanisms of copper under high pressure and shock conditions and provide essential data to improve current Cu empirical potentials.

Topics
  • density
  • theory
  • copper
  • density functional theory
  • deformation mechanism
  • stacking fault