People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tritt, Terry M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2015Synthesis of Non-uniformly Pr-doped SrTiO3 Ceramics and Their Thermoelectric Propertiescitations
- 2015Enhanced thermoelectric figure-of-merit in thermally robust, nanostructured superlattices based on SrTiO3citations
- 2014Thermoelectric properties of strontium titanate superlattices incorporating niobium oxide nanolayerscitations
- 2014Doping site dependent thermoelectric properties of epitaxial strontium titanate thin filmscitations
- 2014Large thermoelectric power factor in Pr-doped SrTiO3-δ ceramics via grain-boundary-induced mobility enhancementcitations
- 2014Significant enhancement in thermoelectric properties of polycrystalline Pr-doped SrTiO3−δ ceramics originating from nonuniform distribution of Pr dopantscitations
- 2011Pulsed laser deposition and thermoelectric properties of In-and Yb-doped CoSb3 skutterudite thin filmscitations
Places of action
Organizations | Location | People |
---|
article
Significant enhancement in thermoelectric properties of polycrystalline Pr-doped SrTiO3−δ ceramics originating from nonuniform distribution of Pr dopants
Abstract
Recently, we have reported a significant enhancement ( >70% at 500 °C) in the thermoelectric power factor (PF) of bulk polycrystalline Pr-doped SrTiO3 ceramics employing a novel synthesis strategy which led to the highest ever reported values of PF among doped polycrystalline SrTiO3. It was found that the formation of Pr-rich grain boundary regions gives rise to an enhancement in carrier mobility. In this Letter, we investigate the electronic and thermal transport in Sr1− x Pr x TiO3 ceramics in order to determine the optimum doping concentration and to evaluate the overall thermoelectric performance. Simultaneous enhancement in the thermoelectric power factor and reduction in thermal conductivity in these samples resulted in more than 30% improvement in the dimensionless thermoelectric figure of merit (ZT) for the whole temperature range over all previously reported maximum values. Maximum ZT value of 0.35 was obtained at 500 °C.