Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Krabbe, Alexander

  • Google
  • 5
  • 26
  • 57

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Stable mass-selected AuTiOx nanoparticles for CO oxidation9citations
  • 2024Stable mass-selected AuTiO x nanoparticles for CO oxidation9citations
  • 2023Exploring new catalysts for conversion of sustainable energy in μ-reactors:Study of mass-selected atoms, clusters, and nanoparticlescitations
  • 2022Reversible Atomization and Nano-Clustering of Pt as a Strategy for Designing Ultra-Low-Metal-Loading Catalysts10citations
  • 2014Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz29citations

Places of action

Chart of shared publication
Kibsgaard, Jakob
2 / 15 shared
Helveg, Stig
3 / 17 shared
Damsgaard, Christian Danvad
3 / 28 shared
Colding-Fagerholt, Sofie
2 / 2 shared
Romeggio, Filippo
2 / 4 shared
Akazawa, Stefan Kei
2 / 2 shared
Palmer, Richard
2 / 4 shared
Tankard, Rikke Egeberg
2 / 2 shared
Sloth, Olivia Fjord
2 / 2 shared
Chorkendorff, Ib
3 / 97 shared
Secher, Niklas Mørch
2 / 3 shared
Nørskov, Jens Kehlet
1 / 32 shared
Jespersen, Sebastian Pirel Fredsgaard
1 / 1 shared
Smitshuysen, Thomas Erik Lyck
1 / 7 shared
Rappe, Andrew M.
1 / 11 shared
Silva, Hugo
1 / 3 shared
Chakraborty, Debasish
1 / 2 shared
Hagen, Nicolai
1 / 1 shared
Kakekhani, Arvin
1 / 2 shared
Banerjee, Sayan
1 / 1 shared
Just, Justus
1 / 8 shared
Zalkovskij, Maksim
1 / 16 shared
Strikwerda, Andrew
1 / 4 shared
Jepsen, Peter Uhd
1 / 46 shared
Lavrinenko, Andrei V.
1 / 98 shared
Lorenzen, Dennis Lund
1 / 1 shared
Chart of publication period
2024
2023
2022
2014

Co-Authors (by relevance)

  • Kibsgaard, Jakob
  • Helveg, Stig
  • Damsgaard, Christian Danvad
  • Colding-Fagerholt, Sofie
  • Romeggio, Filippo
  • Akazawa, Stefan Kei
  • Palmer, Richard
  • Tankard, Rikke Egeberg
  • Sloth, Olivia Fjord
  • Chorkendorff, Ib
  • Secher, Niklas Mørch
  • Nørskov, Jens Kehlet
  • Jespersen, Sebastian Pirel Fredsgaard
  • Smitshuysen, Thomas Erik Lyck
  • Rappe, Andrew M.
  • Silva, Hugo
  • Chakraborty, Debasish
  • Hagen, Nicolai
  • Kakekhani, Arvin
  • Banerjee, Sayan
  • Just, Justus
  • Zalkovskij, Maksim
  • Strikwerda, Andrew
  • Jepsen, Peter Uhd
  • Lavrinenko, Andrei V.
  • Lorenzen, Dennis Lund
OrganizationsLocationPeople

article

Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz

  • Zalkovskij, Maksim
  • Strikwerda, Andrew
  • Jepsen, Peter Uhd
  • Krabbe, Alexander
  • Lavrinenko, Andrei V.
  • Lorenzen, Dennis Lund
Abstract

We present a metamaterial, consisting of a cross structure and a metal mesh filter, that forms a composite with greater functional bandwidth than any terahertz (THz) metamaterial to date. Metamaterials traditionally have a narrow usable bandwidth that is much smaller than common THz sources, such as photoconductive antennas and difference frequency generation. The composite structure shown here expands the usable bandwidth to exceed that of current THz sources. To highlight the applicability of this combination, we demonstrate a series of bandpass filters with only a single pass band, with a central frequency (f) that is scalable from 0.86–8.51 THz, that highly extinguishes other frequencies up to >240 THz. The performance of these filters is demonstrated in experiment, using both air biased coherent detection and a Fourier transform infrared spectrometer (FTIR), as well as in simulation. We present equations—and discuss their scaling laws—which detail the f and full width at half max (Δf) of the pass band, as well as the required geometric dimensions for their fabrication using standard UV photolithography and easily achievable fabrication linewidths. With these equations, the geometric parameters and Δf for a desired frequency can be quickly calculated. Using these bandpass filters as a proof of principle, we believe that this metamaterial composite provides the key for ultra-broadband metamaterial design.

Topics
  • impedance spectroscopy
  • experiment
  • simulation
  • composite
  • positron annihilation lifetime spectroscopy
  • Photoacoustic spectroscopy
  • metamaterial