Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yadav, Anjali

  • Google
  • 3
  • 1
  • 38

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2015Effect of growth temperature on the electronic transport and anomalous Hall effect response in co-sputtered Co2FeSi thin films8citations
  • 2015Effect of growth temperature on structural, magnetic, and transport properties of Co2Cr0.6Fe0.4Al Heusler alloy sputtered thin films11citations
  • 2014Structural and dynamical magnetic response of co-sputtered Co2FeAl heusler alloy thin films grown at different substrate temperatures19citations

Places of action

Chart of shared publication
Chaudhary, Sujeet
3 / 7 shared
Chart of publication period
2015
2014

Co-Authors (by relevance)

  • Chaudhary, Sujeet
OrganizationsLocationPeople

article

Structural and dynamical magnetic response of co-sputtered Co2FeAl heusler alloy thin films grown at different substrate temperatures

  • Chaudhary, Sujeet
  • Yadav, Anjali
Abstract

<jats:p>The interdependence between the dynamical magnetic response and the microstructural properties such as crystallinity, lateral crystallite size, structural ordering of the co-sputtered polycrystalline Co2FeAl thin films on Si (100) are studied by varying the growth temperature from room temperature (RT) to 600 °C. Frequency (7–11 GHz) dependent in-plane ferromagnetic resonance (FMR) studies were carried out by using co-planar waveguide to estimate Gilbert damping constant (α) and effective saturation magnetization (4πMeff). The improvement in crystallinity, larger crystallite and particle sizes of the films are critical in obtaining films with lower α and higher 4πMeff. Increase in the lattice constant with substrate temperature indicates the improvement in the structural ordering at higher temperatures. Minimum value of α is found to be 0.005 ± 0.0003 for the film deposited at 500 °C, which is comparable to the values reported for epitaxial Co2FeAl films. The value of 4πMeff is found to increase from 1.32 to 1.51 T with the increase in deposition temperature from RT to 500 °C. The study also shows that the root mean square (rms) roughness linearly affects the FMR in-homogenous line broadening and the anisotropy field.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • thin film
  • magnetization
  • crystallinity
  • saturation magnetization