Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rosenblatt, C.

  • Google
  • 1
  • 3
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Studies of nanocomposites of carbon nanotubes and a negative dielectric anisotropy liquid crystal24citations

Places of action

Chart of shared publication
Kalakonda, P.
1 / 1 shared
Basu, R.
1 / 4 shared
Iannacchione, G. S.
1 / 1 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Kalakonda, P.
  • Basu, R.
  • Iannacchione, G. S.
OrganizationsLocationPeople

article

Studies of nanocomposites of carbon nanotubes and a negative dielectric anisotropy liquid crystal

  • Kalakonda, P.
  • Rosenblatt, C.
  • Basu, R.
  • Iannacchione, G. S.
Abstract

<jats:p>It has been widely recognized that the combination of carbon nanotube (CNT) and liquid crystals (LCs) not only provides a useful way to align CNTs, but also dramatically enhances the order in the LC phases, which is especially useful in liquid crystal display (LCD) technology. As the measure of this phase behavior, the complex specific heat is presented over a wide temperature range for a negative dielectric anisotropy alkoxyphenylbenzoate liquid crystal (9OO4) and CNT composites as a function of CNT concentration. The calorimetric scans were performed under near-equilibrium conditions between 25 and 95 °C, first cooling and then followed by heating for CNT weight percent ranging from ϕw = 0 to 0.2. All 9OO4/CNT mesophases have transition temperatures ∼1 K higher and a crystallization temperature 4 K higher than that of the pure 9OO4. The crystal phase superheats until a strongly first-order specific heat feature is observed, 0.5 K higher than in the pure 9OO4. The transition enthalpy for the nanocomposite mesophases is 10% lower than that observed in the pure 9OO4. The strongly first-order crystallization and melting transition enthalpies are essentially constant over this range of ϕw. Complementary electroclinic measurement on a 0.05 wt. % sample, cooling towards the smectic-C phase from the smectic-A, indicates that the SmA-SmC transition remains mean-field-like in the presence of the CNTs. Given the homogeneous and random distribution of CNTs in these nanocomposites, we interpret these results as arising from the LC-CNT surface interaction pinning the orientational order uniformly along the CNT, without pinning the position of the 9OO4 molecule, leading to a net ordering effect for all phases. These effects of incorporating CNTs into LCs are likely due to “anisotropic orientational” coupling between CNT and LC, the change in the elastic properties of composites and thermal anisotropic properties of the CNTs.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • surface
  • Carbon
  • phase
  • nanotube
  • anisotropic
  • random
  • crystallization
  • crystallization temperature
  • liquid crystal
  • liquid chromatography
  • specific heat