Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kirnstötter, Stefan

  • Google
  • 2
  • 10
  • 27

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Processing-controlled suppression of Lüders elongation in AlMgMn alloys26citations
  • 2014Hydrogen decoration of radiation damage induced defect structures1citations

Places of action

Chart of shared publication
Pogatscher, Stefan
1 / 61 shared
Gerold, B.
1 / 1 shared
Ebenberger, Paul
1 / 1 shared
Zaefferer, Stefan
1 / 26 shared
Uggowitzer, Peter J.
1 / 62 shared
Hadley, Peter
1 / 5 shared
Schulze, Hans-Joachim
1 / 1 shared
Laven, Johannes G.
1 / 1 shared
Schustereder, Werner
1 / 1 shared
Faccinelli, Martin
1 / 1 shared
Chart of publication period
2019
2014

Co-Authors (by relevance)

  • Pogatscher, Stefan
  • Gerold, B.
  • Ebenberger, Paul
  • Zaefferer, Stefan
  • Uggowitzer, Peter J.
  • Hadley, Peter
  • Schulze, Hans-Joachim
  • Laven, Johannes G.
  • Schustereder, Werner
  • Faccinelli, Martin
OrganizationsLocationPeople

article

Hydrogen decoration of radiation damage induced defect structures

  • Hadley, Peter
  • Schulze, Hans-Joachim
  • Laven, Johannes G.
  • Kirnstötter, Stefan
  • Schustereder, Werner
  • Faccinelli, Martin
Abstract

The defect complexes that are formed when protons with energies in the MeV-range were implanted into high-purity silicon were investigated. After implantation, the samples were annealed at 400 °C or 450 °C for times ranging between 15 minutes and 30 hours. The resistivity of the samples was then analyzed by Spreading Resistance Profiling (SRP). The resistivity shows minima where there is a high carrier concentration and it is possible to extract the carrier concentration from the resistivity data. Initially, there is a large peak in the carrier concentration at the implantation depth where most of the hydrogen is concentrated. For longer anneals, this peak widens as the hydrogen diffuses away from the implantation depth. Following the changes in resistivity as a function of annealing time allows us to characterize the diffusion of hydrogen through these samples. Differences in the diffusion were observed depending on whether the silicon was grown by the magnetic Czochralski (m:Cz) method or the Float zone (Fz) method.

Topics
  • impedance spectroscopy
  • resistivity
  • Hydrogen
  • Silicon
  • defect
  • annealing
  • defect structure