People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stanojevic, Zlatan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
article
strain induced reduction of surface roughness dominated spin relaxation in mosfets
Abstract
Semiconductor spintronics is a rapidly developing field with large impact on microelectronics. Using spin may help to reduce power consumption and increase computational speed. Silicon is perfectly suited for spin-based applications. It is characterized by a weak spin-orbit interaction which should result in a long spin lifetime. However, recent experiments indicate the lifetime is greatly reduced in gated structures. Thus, understanding the peculiarities of the spin-orbit effects on the subband structure and details of the spin propagation in surface layers and thin silicon films is urgently needed. We investigate the contribution of the spin-orbit interaction to the equivalent valley splitting and calculate the spin relaxation matrix elements by using a perturbative k ⋅p approach. We demonstrate that applying uniaxial stress along the [110] direction may considerably suppress electron spin relaxation in silicon surface layers and thin films.