People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Coffey, Greg W.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2015Concept Feasibility Report for Electroplating Zirconium onto Uranium Foil - Year 2
- 2013Silver nanorod arrays for photocathode applicationscitations
- 2010Degradation Mechanisms of SOFC Anodes in Coal Gas Containing Phosphoruscitations
- 2010Calcium- and Cobalt-doped Yttrium Chromites as an Interconnect Material for Solid Oxide Fuel Cellscitations
- 2007Electrode Performance in Reversible Solid Oxide Fuel Cellscitations
- 2006Electrical, Thermoelectric, and Structural Properties of La(MxFe1-x)O3 (M=Mn, Ni, Cu)citations
- 2006High Temperature Corrosion Behavior of Oxidation Resistant Alloys under SOFC Interconnect Dual Exposures
- 2004ELECTRODE DEVELOPMENT FOR REVERSIBLE SOLID OXIDE FUEL CELLS
Places of action
Organizations | Location | People |
---|
article
Silver nanorod arrays for photocathode applications
Abstract
In this study, we explore the possibility of using plasmonic Ag nanorod arrays featuring enhanced photoemission as high-brightness photocathode material. Silver nanorod arrays are synthesized by the DC electrodeposition method and their dimensionality, uniformity, crystallinity and oxide/impurity content are characterized. These Ag nanorod arrays exhibit greatly enhanced two-photon photoemission under 400 nm femtosecond pulsed laser excitation. Plasmonic field enhancement in the array produces photoemission hot spots that are mapped using photoemission electron microscopy (PEEM). The relative photoemission enhancement of nanorod array hot spots relative to that of a flat Ag thin film is found to range between 102 and 3 x 10<sup>3</sup>.