Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Martínez-De-Olcoz, L.

  • Google
  • 1
  • 9
  • 127

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Toughness enhancement in hard ceramic thin films by alloy design127citations

Places of action

Chart of shared publication
Birch, J.
1 / 6 shared
Kindlund, Hanna
1 / 10 shared
Sangiovanni, D. G.
1 / 3 shared
Hultman, L.
1 / 17 shared
Lu, J.
1 / 19 shared
Chirita, V.
1 / 2 shared
Petrov, I.
1 / 13 shared
Greene, J. E.
1 / 15 shared
Jensen, J.
1 / 6 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Birch, J.
  • Kindlund, Hanna
  • Sangiovanni, D. G.
  • Hultman, L.
  • Lu, J.
  • Chirita, V.
  • Petrov, I.
  • Greene, J. E.
  • Jensen, J.
OrganizationsLocationPeople

article

Toughness enhancement in hard ceramic thin films by alloy design

  • Birch, J.
  • Kindlund, Hanna
  • Martínez-De-Olcoz, L.
  • Sangiovanni, D. G.
  • Hultman, L.
  • Lu, J.
  • Chirita, V.
  • Petrov, I.
  • Greene, J. E.
  • Jensen, J.
Abstract

<jats:p>Hardness is an essential property for a wide range of applications. However, hardness alone, typically accompanied by brittleness, is not sufficient to prevent failure in ceramic films exposed to high stresses. Using VN as a model system, we demonstrate with experiment and density functional theory (DFT) that refractory VMoN alloys exhibit not only enhanced hardness, but dramatically increased ductility. V0.5Mo0.5N hardness is 25% higher than that of VN. In addition, while nanoindented VN, as well as TiN reference samples, suffer from severe cracking typical of brittle ceramics, V0.5Mo0.5N films do not crack. Instead, they exhibit material pile-up around nanoindents, characteristic of plastic flow in ductile materials. Moreover, the wear resistance of V0.5Mo0.5N is considerably higher than that of VN. DFT results show that tuning the occupancy of d–t2g metallic bonding states in VMoN facilitates dislocation glide, and hence enhances toughness, via the formation of stronger metal/metal bonds along the slip direction and weaker metal/N bonds across the slip plane.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • polymer
  • theory
  • experiment
  • thin film
  • crack
  • wear resistance
  • hardness
  • dislocation
  • density functional theory
  • ceramic
  • refractory
  • ductility
  • tin