Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Garg, R.

  • Google
  • 4
  • 21
  • 41

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2017Substantiation of buried two dimensional hole gas (2DHG) existence in GaN-on-Si epitaxial heterostructurecitations
  • 2014A review of non linear piezoelectricity in semiconductors15citations
  • 2013Non-linear piezoelectricity in zinc blende GaAs and InAs semiconductors26citations
  • 2012Non linear piezoelectricity in zincblende GaAs and InAs semiconductorscitations

Places of action

Chart of shared publication
Camuso, G.
1 / 2 shared
Zhu, C.
1 / 7 shared
Yang, S.
1 / 22 shared
Longobardi, G.
1 / 2 shared
Udrea, F.
1 / 4 shared
Imam, M.
1 / 2 shared
Charles, A.
1 / 1 shared
Sun, J.
1 / 16 shared
Al-Zahrani, Unknown
1 / 1 shared
Crutchley, B. G.
1 / 1 shared
Tomic, S.
1 / 3 shared
Marko, I. P.
1 / 2 shared
Tse, G.
3 / 4 shared
Sweeney, S. J.
1 / 2 shared
Migliorato, Max A.
3 / 10 shared
Li, C. K.
1 / 1 shared
Wu, Y. R.
1 / 1 shared
Monteverde, U.
2 / 2 shared
Pal, J.
3 / 6 shared
Tomić, S.
1 / 3 shared
Haxha, V.
2 / 2 shared
Chart of publication period
2017
2014
2013
2012

Co-Authors (by relevance)

  • Camuso, G.
  • Zhu, C.
  • Yang, S.
  • Longobardi, G.
  • Udrea, F.
  • Imam, M.
  • Charles, A.
  • Sun, J.
  • Al-Zahrani, Unknown
  • Crutchley, B. G.
  • Tomic, S.
  • Marko, I. P.
  • Tse, G.
  • Sweeney, S. J.
  • Migliorato, Max A.
  • Li, C. K.
  • Wu, Y. R.
  • Monteverde, U.
  • Pal, J.
  • Tomić, S.
  • Haxha, V.
OrganizationsLocationPeople

article

Non-linear piezoelectricity in zinc blende GaAs and InAs semiconductors

  • Tse, G.
  • Tomić, S.
  • Migliorato, Max A.
  • Haxha, V.
  • Monteverde, U.
  • Garg, R.
  • Pal, J.
Abstract

This work explores the strain dependence of the piezoelectric effect in GaAs and InAs zinc blende crystals. We write the polarization in terms of the internal anion-cation displacement and the ionic and dipole charges. We then use ab initio density functional theory to evaluate the dependence of all quantities on the strain tensor. We investigate which aspects of the elastic and dielectric response of zinc blende crystals are sources of non-linearities in the piezoelectric effect. We observe that the main source of non-linearities is the response to elastic deformation and, in particular, the internal sublattice displacement of the interpenetrating cation and anion sublattices. We show that the internal sublattice displacement dependence on the diagonal stress components is neither symmetric nor antisymmetric in the strain. Therefore, non-linear coefficients of order higher than quadratic are needed to correctly describe non-linear effects. Using a fitting procedure of the ab initio data, we also determine all non-linear piezoelectric coefficients up to the third power in the diagonal components of the strain tensor. We can report that non-linear effects up to third order can be significant in precisely determining the magnitude of the piezoelectric polarization if compressive or tensile strains larger than 10% are present. We notice however that, in nanostructures such as quantum dots, the optical properties are less sensitive to the third order non-linear piezoelectric effect and that third order coefficients can therefore be neglected. © 2013 AIP Publishing LLC.

Topics
  • density
  • impedance spectroscopy
  • theory
  • zinc
  • semiconductor
  • laser emission spectroscopy
  • density functional theory
  • quantum dot
  • liquid-liquid chromatography