People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lind, Erik
Lund University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023Low temperature atomic hydrogen annealing of InGaAs MOSFETscitations
- 2023Time evolution of surface species during the ALD of high-k oxide on InAscitations
- 2023Time evolution of surface species during the ALD of high-k oxide on InAscitations
- 2023Tuning of Quasi-Vertical GaN FinFETs Fabricated on SiC Substratescitations
- 2023Three-Dimensional Integration of InAs Nanowires by Template-Assisted Selective Epitaxy on Tungstencitations
- 2022Oxygen relocation during HfO2 ALD on InAscitations
- 2022Doping Profiles in Ultrathin Vertical VLS-Grown InAs Nanowire MOSFETs with High Performance.
- 2022Template-Assisted Selective Epitaxy of InAs on W
- 2021Doping Profiles in Ultrathin Vertical VLS-Grown InAs Nanowire MOSFETs with High Performancecitations
- 2020Atomic Layer Deposition of Hafnium Oxide on InAs : Insight from Time-Resolved in Situ Studiescitations
- 2020Atomic Layer Deposition of Hafnium Oxide on InAscitations
- 2016ZrO2 and HfO2 dielectrics on (001) n-InAs with atomic-layer-deposited in situ surface treatmentcitations
- 2016ZrO2 and HfO2 dielectrics on (001) n-InAs with atomic-layer-deposited in situ surface treatmentcitations
- 2014InAs nanowire MOSFETs in three-transistor configurations: single balanced RF down-conversion mixers.citations
- 2014Thin electron beam defined hydrogen silsesquioxane spacers for vertical nanowire transistorscitations
- 2013Interface characterization of metal-HfO2-InAs gate stacks using hard x-ray photoemission spectroscopy
- 2013Combining axial and radial nanowire heterostructures: Radial Esaki diodes and tunnel field-effect transistorscitations
- 2012Al2O3/InAs metal-oxide-semiconductor capacitors on (100) and (111)B substratescitations
- 2012High-Frequency Performance of Self-Aligned Gate-Last Surface Channel In0.53Ga0.47As MOSFETcitations
- 2011High Transconductance Self-Aligned Gate-Last Surface Channel In0.53Ga0.47As MOSFET
- 2011Interface composition of atomic layer deposited HfO2 and Al2O3 thin films on InAs studied by X-ray photoemission spectroscopycitations
- 2004Resonant tunneling permeable base transistor based pulsed oscillator
- 2004Tunneling Based Electronic Devices
Places of action
Organizations | Location | People |
---|
article
Interface characterization of metal-HfO2-InAs gate stacks using hard x-ray photoemission spectroscopy
Abstract
MOS devices based on III-V semiconductors and thin high-k dielectric layers offer possibilities for improved transport properties. Here, we have studied the interface structure and chemical composition of realistic MOS gate stacks, consisting of a W or Pd metal film and a 6- or 12-nm-thick HfO2 layer deposited on InAs, with Hard X-ray Photoemission Spectroscopy. In and As signals from InAs buried more than 18 nm below the surface are clearly detected. The HfO2 layers are found to be homogeneous, and no influence of the top metal on the sharp InAs-HfO2 interface is observed. These results bridge the gap between conventional photoemission spectroscopy studies on various metal-free model samples with very thin dielectric layers and realistic MOS gate stacks. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.