People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Perdahcioglu, Emin Semih
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Periodic Homogenization in Crystal Plasticity
- 2020An RVE-Based Study of the Effect of Martensite Banding on Damage Evolution in Dual Phase Steelscitations
- 2019Prediction of void growth using gradient enhanced polycrystal plasticitycitations
- 2018Investigation of microstructural features on damage anisotropy
- 2018Investigation of anisotropic damage evolution in dual phase steels
- 2017Implementation and application of a gradient enhanced crystal plasticity modelcitations
- 2017Numerical investigation of void growth with respect to lattice orientation in bcc single crystal structure
- 2016Constitutive modeling of hot horming of austenitic stainless steel 316LN by accounting for recrystallization in the dislocation evolution
- 2013Modeling of the Austenite-Martensite Transformation in Stainless and TRIP Steelscitations
- 2013Strain direction dependency of martensitic transformation in austenitic stainless steels: The effect of gamma-texturecitations
Places of action
Organizations | Location | People |
---|
document
Modeling of the Austenite-Martensite Transformation in Stainless and TRIP Steels
Abstract
The transformation of austenite to martensite is a dominant factor in the description of the constitutive behavior during forming of TRIP assisted steels. To predict this transformation different models are currently available. In this paper the transformation is regarded as a stress induced process based on the thermodynamic action of the local stresses during transformation. A threshold for the thermodynamic action, above which transformation will occur, can be easily measured in a properly instrumented tensile test. The martensitic transformation is a diffusionless lattice shear. It is characterized by a habit plane normal n and a shear vector m, which are both defined with respect to the austenite lattice coordinate system. Therefore the thermodynamic action in each material grain strongly depends on the orientation of the grain with respect to the applied stress.Uniaxial tensile tests on both a non-textured austenitic stainless steel and one with a strong crystallographic texture were performed in both the rolling and the transverse directions. Both materials show mechanically induced phase transformation from austenite to martensite. When a strong texture is present in the austenite, differences between transformations during deformation in different directions can be observed clearly. The stress induced transformation theory, in combination with the textures measured before and after deformation, is used to explain and model the difference in transformation behavior when straining in various directions. During deformation the texture changes. This can have consequences for modeling of the transformation during non-proportional deformation.