People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Reis, A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023An ethics framework for social listening and infodemic managementcitations
- 2023A Review on Direct Laser Deposition of Inconel 625 and Inconel 625-Based Composites-Challenges and Prospectscitations
- 2023Adding Value to Secondary Aluminum Casting Alloys: A Review on Trends and Achievementscitations
- 2023A Predictive Methodology for Temperature, Heat Generation and Transfer in Gigacycle Fatigue Testingcitations
- 2023Infiltration of aluminum in 3D-printed metallic inserts
- 2022Finite Element Analysis of Distortions, Residual Stresses and Residual Strains in Laser Powder Bed Fusion-Produced Components
- 2022Automation of Property Acquisition of Single Track Depositions Manufactured through Direct Energy Depositioncitations
- 2022Thermal study of a cladding layer of Inconel 625 in Directed Energy Deposition (DED) process using a phase-field modelcitations
- 2020Smart Data Visualisation as a Stepping Stone for Industry 4.0-a Case Study in Investment Casting Industrycitations
- 2020Automatic Visual Inspection of Turbo Vanes produced by Investment Casting Processcitations
- 2019Fracture characterization of a cast aluminum alloy aiming machining simulationcitations
- 2019Mechanical characterization of the AlSi9Cu3 cast alloy under distinct stress states and thermal conditionscitations
- 2017Simulation Studies of Turning of Aluminium Cast Alloy Using PCD Toolscitations
- 2017Comparison Between Cemented Carbide and PCD Tools on Machinability of a High Silicon Aluminum Alloycitations
- 2016Laboratory performance of universal adhesive systems for luting CAD/CAM restorative materials
- 2016Development of a Flexible, Light Weight Structure, Adaptable to any Space through a Shape Shifting Featurecitations
- 2016Integrated thermomechanical model for forming of glass containerscitations
- 2012Damage Prediction in Incremental Forming by Using Lemaitre Damage Modelcitations
- 2012Custom Hip Prostheses by Integrating CAD and Casting Technology
- 2002Finite-element simulation and experimental validation of a plasticity model of texture and strain-induced anisotropy
Places of action
Organizations | Location | People |
---|
document
Damage Prediction in Incremental Forming by Using Lemaitre Damage Model
Abstract
Incremental forming is an innovative flexible method used for manufacturing of the sheet metal products and brings a great insight for the small-batch-size or customized sheet products. Some experiments show that incremental sheet metal forming can undergo higher deformations than traditional sheet metal forming. The traditional method to evaluate formability like forming limit curve (FLD) etc can't give the right answer in incremental forming which is subjected to highly non-monotonic serrated strain paths. In this paper, the Lemaitre' damage model is presented and fully coupled with finite element simulation in commercial software ABAQUS to predict the failure in incremental forming. Results show that the prediction makes a great agreement with the relevant experiments.