People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Obrien, Aoife
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Inference of oxygen vacancies in hydrothermal Na0.5Bi0.5TiO3
Abstract
A high-resolution x-ray powder diffraction study has been made of pseudo-rhombohedral and tetragonal phases in Na0.5Bi0.5TiO3 (NBT), produced via hydrothermal and conventional solid-state methods. Hydrothermal NBT exhibits significantly greater structural distortion at room temperature than solid-state NBT. Peak widths and superstructure peak intensities show a phase transition at ∼305 °C, with trends suggesting that the structure tends towards cubic symmetry at this temperature. Structural refinements indicate that the transition occurs via a phase coexistence region with no clear intermediate phase. Piezoelectric data show evidence of polarisation pinning in hydrothermal NBT, interpreted as a high proportion of oxygen vacancies.