People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Quetz, Abdiel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2016Phase transitions and magnetocaloric and transport properties in off-stoichiometric GdNi2Mnxcitations
- 2013Enhancement of ferromagnetism by Cr doping in Ni-Mn-Cr-Sb Heusler alloyscitations
- 2013Mn1-xFexCoGe: A strongly correlated metal in the proximity of a noncollinear ferromagnetic statecitations
- 2012Magnetic and magnetocaloric properties of the new rare-earth–transition-metal intermetallic compound Gd3Co29Ge4B10citations
Places of action
Organizations | Location | People |
---|
article
Magnetic and magnetocaloric properties of the new rare-earth–transition-metal intermetallic compound Gd3Co29Ge4B10
Abstract
<jats:p>The compounds Gd3-xYxCo29Ge4B10 (x = 0, 0.5, 1.0, 1.5, and 3.0), Gd3Co29Al4B10, and Gd3Co29Al4B10 were synthesized by arc melting, and their magnetic properties investigated as a function of temperature and applied magnetic field. X-ray measurements showed primarily single-phase samples with the tetragonal crystal structure P4/nmm. It was found that Gd3Co29Ge4B10 orders ferromagnetically at TC = 212 K and shows a compensation point at 128 K, indicating a ferrimagnetic ordering of the Co and Gd moments. An entropy change of −ΔS = 0.5 J/kgK was observed in a 5-T field at TC for this sample, while a change in sign for this quantity was observed both at the maximum value of magnetization (around 200 K) and then again at the compensation point. Substitution of Y for Gd in Gd3Co29Ge4B10 does not affect the Curie temperature, but shifts the compensation point to lower temperatures. This indicates that a decrease in Gd concentration does not affect the d-d exchange interaction, but has a pronounced effect on the f-d exchange interaction.</jats:p>