Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Skomski, Ralph

  • Google
  • 2
  • 11
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2012Nanomagnetic skyrmions9citations
  • 2011Length scales of interactions in magnetic, dielectric, and mechanical nanocomposites7citations

Places of action

Chart of shared publication
Schmidt, D.
1 / 6 shared
Schubert, Eva
2 / 13 shared
Enders, A.
1 / 3 shared
Zhang, Rui
1 / 14 shared
Li, Zhen
1 / 17 shared
Kirby, Roger D.
1 / 1 shared
Sellmyer, D. J.
1 / 2 shared
Hofmann, T.
1 / 10 shared
Balamurugan, B.
1 / 2 shared
Enders, Axel
1 / 2 shared
Sellmyer, David J.
1 / 1 shared
Chart of publication period
2012
2011

Co-Authors (by relevance)

  • Schmidt, D.
  • Schubert, Eva
  • Enders, A.
  • Zhang, Rui
  • Li, Zhen
  • Kirby, Roger D.
  • Sellmyer, D. J.
  • Hofmann, T.
  • Balamurugan, B.
  • Enders, Axel
  • Sellmyer, David J.
OrganizationsLocationPeople

article

Nanomagnetic skyrmions

  • Schmidt, D.
  • Schubert, Eva
  • Enders, A.
  • Zhang, Rui
  • Li, Zhen
  • Kirby, Roger D.
  • Sellmyer, D. J.
  • Skomski, Ralph
  • Hofmann, T.
Abstract

<jats:p>Magnetic skyrmions and other topologically protected nanostructures are investigated. Since skyrmions are mathematical rather than physical objects, they describe a wide variety of physical systems, from simple magnetic domain walls to complicated quantum phases with long-range many-body entanglement. Important distinctions concern the skyrmions’ relativistic character, their quantum-mechanical or classical nature, and the one- or many-body character of the wave functions. As specific examples we consider magnetic nanospirals, where the topology of a vortex-like spin state is protected by magnetostatic interactions, and edge currents in dilute magnetic semiconductors and metallic nanodots. Our analysis militates against giant orbital moments created by a mesocopically enhanced spin-orbit coupling.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • semiconductor
  • magnetic domain wall