People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Daumont, C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Influence of strain on the electronic structure of the TbMnO3/SrTiO3 epitaxial interface
Abstract
<p>Understanding the magnetotransport properties of epitaxial strained thin films requires knowledge of the chemistry at the interface. We report on the change in Mn electronic structure at the epitaxially strained TbMnO3/SrTiO3 interface. Scanning transmission electron microscopy shows an abrupt interface with a bright contrast, indicating the presence of misfit strain. Electron energy loss spectroscopy displays a chemical shift of the Mn L-2,L-3 edge together with a high white line intensity ratio revealing a reduction in the nominal Mn oxidation state in the first 3-4 monolayers. These observations indicate misfit strain significantly changes the electronic structure at the interface. (C) 2011 American Institute of Physics. [doi:10.1063/1.3663218]</p>